112 research outputs found

    Information systems requirements for the microgravity science and applications program

    Get PDF
    NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced within the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives

    Monte Carlo Simulation of Long Chain Polymer Melts: Crossover from Rouse to Reptation Dynamics

    Full text link
    We present data of Monte Carlo simulations for monodisperse linear polymer chains in dense melts with degrees of polymerization between N=16 and N=512. The aim of this study is to investigate the crossover from Rouse-like dynamics for short chains to reptation-like dynamics for long chains. To address this problem we calculate a variety of different quantities: standard mean-square displacements of inner monomers and of the chain's center of mass, the recently proposed cubic invariant, persistence of bond-vector orientation with time, and the auto-correlation functions of the bond vector, the end-to-end vector and the Rouse modes. This analysis reveals that the crossover from non- to entangled dynamics is very protracted. Only the largest chain length N=512, which is about 13 times larger than the entanglement length, shows evidence for reptation.Comment: 38 pages of REVTeX, 14 PostScript figure

    Comparison of Dissipative Particle Dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems

    Full text link
    In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain constant temperature and to reproduce the underlying physical phenomena in non-equilibrium situations. The common practice of switching-off the Langevin thermostat in the flow direction is also critically revisited. The efficiency of different weight functions for the DPD thermostat is quantitatively analyzed as a function of the solvent quality and the non-equilibrium situation.Comment: 12 pages, introduction improved, references added, to appear in Phys. Rev.

    Static and dynamic properties of the interface between a polymer brush and a melt of identical chains

    Full text link
    Molecular dynamics simulations of a short-chain polymer melt between two brush-covered surfaces under shear have been performed. The end-grafted polymers which constitute the brush have the same chemical properties as the free chains in the melt and provide a soft deformable substrate. Polymer chains are described by a coarse-grained bead-spring model with Lennard-Jones interactions between the beads and a FENE potential between nearest neighbors along the backbone of the chains. The grafting density of the brush layer offers a way of controlling the behavior of the surface without altering the molecular interactions. We perform equilibrium and non-equilibrium Molecular Dynamics simulations at constant temperature and volume using the Dissipative Particle Dynamics thermostat. The equilibrium density profiles and the behavior under shear are studied as well as the interdigitation of the melt into the brush, the orientation on different length scales (bond vectors, radius of gyration, and end-to-end vector) of free and grafted chains, and velocity profiles. The viscosity and slippage at the interface are calculated as functions of grafting density and shear velocity.Comment: 12 pages, submitted to J Chem Phy

    Nonlinear effects in charge stabilized colloidal suspensions

    Full text link
    Molecular Dynamics simulations are used to study the effective interactions in charged stabilized colloidal suspensions. For not too high macroion charges and sufficiently large screening, the concept of the potential of mean force is known to work well. In the present work, we focus on highly charged macroions in the limit of low salt concentrations. Within this regime, nonlinear corrections to the celebrated DLVO theory [B. Derjaguin and L. Landau, Acta Physicochem. USSR {\bf 14}, 633 (1941); E.J.W. Verwey and J.T.G. Overbeck, {\em Theory of the Stability of Lyotropic Colloids} (Elsevier, Amsterdam, 1948)] have to be considered. For non--bulklike systems, such as isolated pairs or triples of macroions, we show, that nonlinear effects can become relevant, which cannot be described by the charge renormalization concept [S. Alexander et al., J. Chem. Phys. {\bf 80}, 5776 (1984)]. For an isolated pair of macroions, we find an almost perfect qualitative agreement between our simulation data and the primitive model. However, on a quantitative level, neither Debye-H\"uckel theory nor the charge renormalization concept can be confirmed in detail. This seems mainly to be related to the fact, that for small ion concentrations, microionic layers can strongly overlap, whereas, simultaneously, excluded volume effects are less important. In the case of isolated triples, where we compare between coaxial and triangular geometries, we find attractive corrections to pairwise additivity in the limit of small macroion separations and salt concentrations. These triplet interactions arise if all three microionic layers around the macroions exhibit a significant overlap. In contrast to the case of two isolated colloids, the charge distribution around a macroion in a triple is found to be anisotropic.Comment: 10 pages, 9 figure

    Goodness-of-fit testing for left-truncated two-parameter weibull distributions with known truncation point

    Get PDF
    The left-truncated Weibull distribution is used in life-time analysis, it has many applications ranging from financial market analysis and insurance claims to the earthquake inter-arrival times. We present a comprehensive analysis of the left-truncated Weibull distribution when the shape, scale or both parameters are unknown and they are determined from the data using the maximum likelihood estimator. We demonstrate that if both the Weibull parameters are unknown then there are sets of sample configurations, with measure greater than zero, for which the maximum likelihood equations do not possess non trivial solutions. The modified critical values of the goodness-of-fit test from the Kolmogorov-Smirnov test statistic when the parameters are unknown are obtained from a quantile analysis. We find that the critical values depend on sample size and truncation level, but not on the actual Weibull parameters. Confirming this behavior, we present a complementary analysis using the Brownian bridge approach as an asymptotic limit of the Kolmogorov-Smirnov statistics and find that both approaches are in good agreement. A power testing is performed for our Kolmogorov-Smirnov goodness-of-fit test and the issues related to the left-truncated data are discussed. We conclude the paper by showing the importance of left-truncated Weibull distribution hypothesis testing on the duration times of failed marriages in the US, worldwide terrorist attacks, waiting times between stock market orders, and time intervals of radioactive decay.Ayşe Kızılersü, Markus Kreer, Anthony W. Thoma

    Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels

    Full text link
    The existence of self-similar solutions with fat tails for Smoluchowski's coagulation equation has so far only been established for the solvable and the diagonal kernel. In this paper we prove the existence of such self-similar solutions for continuous kernels KK that are homogeneous of degree γ[0,1)\gamma \in [0,1) and satisfy K(x,y)C(xγ+yγ)K(x,y) \leq C (x^{\gamma} + y^{\gamma}). More precisely, for any ρ(γ,1)\rho \in (\gamma,1) we establish the existence of a continuous weak self-similar profile with decay x(1+ρ)x^{-(1{+}\rho)} as xx \to \infty

    AR/VR technologies in management and education

    Get PDF
    The potential of some technological innovations for a long period of time remains either not fully explored or underestimated. The article gives a brief description of the AR and VR technologies, shows the possibilities of their use in various sectors and industries of the modern world economy. The paper provides an overview of the positive aspects and competitive advantages that AR and VR technologies can bring to companies engaged in the development and production of devices and instruments that allow using these technologies. This is a growth in sales of products and services, a reduction in operating costs, an increase in customer satisfaction, an improvement in the quality of product, services and service. The study also considers the limitations of using AR and VR technologies in educational environments. According to the authors, there are more industries and areas where AR and VR technologies can be applied.The paper analyses the volume of investments in the field of VR / AR, gives the forecasts of possible improvements of VR and AR devices, leading to creating of wider opportunities for their utilization in industrial, financial and educational spheres. The article presents the most successful examples of the implementation of AR and VR technologies in 2012-2021 in foreign and Russian companies. For statistical confirmation of the obtained results the authors performed a correlation analysis of the forecast estimates of the development of AR and VR technologies in 2021–2023. The paper makes the forecast of sales of technologies and devices in some sectors of the economy by 2024. Based on the analysis, the study concludes that there is a significant relationship between the electronics market as a whole and the VR/AR market

    Self-Diffusion of a Polymer Chain in a Melt

    Full text link
    Self-diffusion of a polymer chain in a melt is studied by Monte Carlo simulations of the bond fluctuation model, where only the excluded volume interaction is taken into account. Polymer chains, each of which consists of NN segments, are located on an L×L×LL \times L \times L simple cubic lattice under periodic boundary conditions, where each segment occupies 2×2×22 \times 2 \times 2 unit cells. The results for N=32,48,64,96,128,192,256,384N=32, 48, 64, 96, 128, 192, 256, 384 and 512 at the volume fraction ϕ0.5\phi \simeq 0.5 are reported, where L=128L = 128 for N256N \leq 256 and L=192 for N384N \geq 384. The NN-dependence of the self-diffusion constant DD is examined. Here, DD is estimated from the mean square displacements of the center of mass of a single polymer chain at the times larger than the longest relaxation time. From the data for N=256N = 256, 384 and 512, the apparent exponent xdx_{\rm d}, which describes the apparent power law dependence of DD on NN as DNxdD \propto N^{- x_{\rm d}}, is estimated as xd2.4x_{\rm d} \simeq 2.4. The ratio Dτ/D \tau / seems to be a constant for N=192,256,384N = 192, 256, 384 and 512, where τ\tau and denote the longest relaxation time and the mean square end-to-end distance, respectively.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp
    corecore