336 research outputs found

    Against the tide: the role of bacterial adhesion in host colonization

    Get PDF
    Evolving under the constant exposure to an abundance of diverse microbial life, the human body has developed many ways of defining the boundaries between self and non-self. Many physical and immunological barriers to microbial invasion exist, and yet bacteria have found a multitude of ways to overcome these, initiate interactions with and colonize the human host. Adhesion to host cells and tissues is a key feature allowing bacteria to persist in an environment under constant flux and to initiate transient or permanent symbioses with the host. This review discusses reasons why adhesion is such a seemingly indispensable requirement for bacteria–host interactions, and whether bacteria can bypass the need to adhere and still persist. It further outlines open questions about the role of adhesion in bacterial colonization and persistence within the host

    Predictive modelling of a novel anti-adhesion therapy to combat bacterial colonisation of burn wounds

    Get PDF
    As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model

    Hexanuclear and undecanuclear iron(III) carboxylates as catalyst precursors for cyclohexane oxidation

    Get PDF
    Two multinuclear complexes [Fe-6(mu(3)-O)(2)(mu(4)-O-2)L-10(OAc)(2)(H2O)(2)]center dot 2.625Et(2)O center dot 2.375H(2)O (1) and [(Fe11Cl)-Cl-III-(mu(4)-O)(3)(mu(3)-O)(5)L-16(dmf)(2.5)(H2O)(0.5)]center dot Et2O center dot 1.25dmf center dot 3.8H(2)O (2), where HL = 3,4,5-trimethoxybenzoic acid and dmf = dimethylformamide, have been prepared from trinuclear iron(III) carboxylates via their structural rearrangement in dimethylformamide or diethyl ether-dimethylformamide 9:1, respectively, and slow vapor diffusion of diethyl ether into the reaction mixture. Both compounds have been characterized by X-ray diffraction, optical, Mossbauer spectroscopy, and magnetic measurements. Complex 1 possesses a hexanuclear ferric peroxido-dioxido {Fe-6(O-2)(O)(2)}(12+) core unit, which adopts a recliner conformation, while complex 2 contains an unprecedented {Fe11O8Cl}(16+) core, in which 9 ferric ions are six-coordinate and the remaining two are five-coordinate. Another structural feature of note of the undecanuclear core is the presence of a deformed cubane entity {Fe-4(mu(3)-O)(mu(4)-O)(3)}(4+). Both complexes act as catalyst precursors for the oxidation of cyclohexane to cyclohexanol and cyclohexanone with aqueous H2O2, in the presence of pyrazinecarboxylic acid. Remarkable TONs and TOFs (the latter mainly for 1) with concomitant quite good yields have been achieved under mild conditions. Moreover, 1 exhibits remarkably high activity in an exceptionally short reaction time (45 min), being unprecedented for any metal catalyzed alkane oxidation by H2O2. The catalytic reactions proceed via Fenton type chemistry

    Stable-Isotope and Trace Element Time Series from Fedchenko Glacier (Pamirs) Snow/Firn Cores

    Get PDF
    In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world\u27s longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2-14 times lower than in the Altai glaciers. Loess from Afghan-Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century

    Displacement of Pathogens by an Engineered Bacterium Is a Multifactorial Process That Depends on Attachment Competition and Interspecific Antagonism

    Get PDF
    Pathogen attachment to host cells is a key process during infection, and inhibition of pathogen adhesion is a promising approach to the prevention of infectious disease. We have previously shown that multivalent adhesion molecules (MAMs) are abundant in both pathogenic and commensal bacterial species, mediate early attachment to host cells, and can contribute to virulence. Here, we investigated the efficacy of an engineered bacterium expressing a commensal MAM on its surface in preventing pathogen attachment and pathogen-mediated cytotoxicity in a tissue culture infection model. We were able to dissect the individual contributions of adhesion and interspecific antagonism on the overall outcome of infection for a range of different pathogens by comparison with the results obtained with a fully synthetic adhesion inhibitor. We found that the potential of the engineered bacterium to outcompete the pathogen is not always solely dependent on its ability to hinder host attachment but, depending on the pathogenic species, may also include elements of interspecific antagonism, such as competition for nutrients and its ability to cause a loss of fitness due to production of antimicrobial factors

    Reported food intake and distribution of body fat: a repeated cross-sectional study

    Get PDF
    BACKGROUND: Body mass, as well as distribution of body fat, are predictors of both diabetes and cardiovascular disease. In Northern Sweden, despite a marked increase in average body mass, prevalence of diabetes was stagnant and myocardial infarctions decreased. A more favourable distribution of body fat is a possible contributing factor. This study investigates the relative importance of individual food items for time trends in waist circumference (WC) and hip circumference (HC) on a population level. METHODS: Independent cross-sectional surveys conducted in 1986, 1990, 1994 and 1999 in the two northernmost counties of Sweden with a common population of 250000. Randomly selected age stratified samples, altogether 2982 men and 3087 women aged 25–64 years. Questionnaires were completed and anthropometric measurements taken. For each food item, associations between frequency of consumption and waist and hip circumferences were estimated. Partial regression coefficients for every level of reported intake were multiplied with differences in proportion of the population reporting the corresponding levels of intake in 1986 and 1999. The sum of these product terms for every food item was the respective estimated impact on mean circumference. RESULTS: Time trends in reported food consumption associated with the more favourable gynoid distribution of adipose tissue were increased use of vegetable oil, pasta and 1.5% fat milk. Trends associated with abdominal obesity were increased consumption of beer in men and higher intake of hamburgers and French fried potatoes in women. CONCLUSION: Food trends as markers of time trends in body fat distribution have been identified. The method is a complement to conventional approaches to establish associations between food intake and disease risk on a population level
    • …
    corecore