144 research outputs found

    Precision calculation of isospin-symmetry-breaking corrections to T=1/2 mirror decays using multi-reference charge-dependent density functional theory

    Full text link
    We present systematic study of isospin impurities (αISB\alpha_{\rm ISB}) to the wave functions of T=1/2T=1/2, 11≤A≤4711\leq A \leq 47 mirror nuclei and the isospin-symmetry-breaking (ISB) corrections (δISBV\delta_{\rm ISB}^{\rm V}) to their ground state vector β\beta-decays using, for the first time, multi-reference charge-dependent density functional theory (MR-DFT) that includes strong-force-rooted class-III interaction adjusted to correct for the Nolen-Schiffer anomaly in nuclear masses. We demonstrate that, unexpectedly, the strong-force-rooted isovector force gives rise to a large systematic increase of αISB\alpha_{\rm ISB} and δISBV\delta_{\rm ISB}^{\rm V} as compared to the results obtained within MR-DFT that uses Coulomb interaction as the only source of ISB. This, in turn, increases a central value of the VudV_{\rm ud} element of the CKM matrix extracted from the T=1/2T=1/2 mirrors bringing it closer to the value obtained form the purely vector superallowed 0+→0+0^+ \to 0^+ transitions. In order to compute the value of VudV_{\rm ud}, we performed precision calculation of the Fermi matrix elements in A=19,21,35A=19, 21, 35, and 37 mirror nuclei using DFT-rooted configuration-interaction model that includes all relevant axially-deformed particle-hole configurations built upon Nilsson orbitals originating from the spherical sdsd shell. Our calculations yield ∣Vud∣=0.9736(16)|V_{\rm ud}|=0.9736(16).Comment: 5 pages, 3 figure

    A student orientated third grade curriculum

    Get PDF
    Includes bibliographical references.This project took a typical third grade curriculum that would usually be taught by using basal readers and other types of text books and evolved it into a curriculum that is more student orientated where the students can learn through meaningful activities that are orientated to a hands on approach. This project took the best parts of the basal readers and used them in association with trade books, creative assignments, creative writing assignments, and hands on activities to help enlarge the students perspective and opportunities for learning. The project used the State of Illinois objectives for a third grade classroom to ensure that all subject and content areas were met.B.S.Ed. (Bachelor of Science in Education

    Gamow-Teller response in the configuration space of a density-functional-theory-rooted no-core configuration-interaction model

    Get PDF
    Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi) particle-(multi) hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N approximate to Z nuclei including the p-shell Li-8 and Be-8 nuclei and the sd-shell well-deformed nucleus Mg-24. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT beta decay in doubly-magic spherical Sn-100 and the low-spin spectrum in In-100. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may either serve as a complement or even as an alternative to other theoretical approaches, including the conventional nuclear shell model.Peer reviewe

    Mirror and triplet displacement energies within nuclear DFT : Numerical stability

    Get PDF
    Isospin-symmetry-violating class II and III contact terms are introduced into the Skyrme energy density functional to account for charge dependence of the strong nuclear interaction. The two new coupling constants are adjusted to available experimental data on triplet and mirror displacement energies, respectively. We present preliminary results of the fit, focusing on its numerical stability with respect to the basis size.Peer reviewe

    Isospin-symmetry breaking in masses of N similar or equal to Z nuclei

    Get PDF
    Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N = Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton-neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T = 1/2 doublets and T= 1 triplets, and TDEs for the T= 1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the differences in the NN scattering lengths, a(nn), a(pp), and a(np). Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe

    The interactive effect of dietary n-6: n-3 fatty acid ratio and vitamin E level on tissue lipid peroxidation, DNA damage in intestinal epithelial cells, and gut morphology in chickens of different ages

    Get PDF
    Feeding chickens diets high in n-3 fatty acids (FA) increases their incorporation into tissue lipids, but leads to oxidative stress in cells. This study investigated the effect of the dietary polyunsaturated FA ratio (PUFA n-6: n-3) and vitamin E (vE) level on DNA damage and morphological changes in the gut epithelium of chickens. One-day-old female broiler chicks (n = 176) were divided into 4 groups fed for 43 d diets with a high (HR) or low (LR) PUFA n-6: n-3 ratio and supplemented with 50 or 300 mg vE kg−1. Performance was calculated for periods of d 1 to 9, d 9 to 16, d 9 to 35, and d 9 to 42, while organs were sampled at d 9, d 17, d 36, and d 43. At d 17 and d 43, DNA damage of epithelial cells in the duodenum and jejunum was measured and duodenal and jejunal morphology was analyzed. HR diets improved FCR for the periods of d 1 to 9, d 9 to 16 and d 9 to 42, whereas the increased vE level improved FCR for the period of d 9 to 16. In the jejunum DNA damage was greater in chickens fed LR than HR diets at d 17 (P P P = 0.022), and mucosa thickness (P = 0.029) and villus height (P = 0.035) at d 43. The results indicated that feeding birds LR diets and vE levels significantly exceeding the recommendation induced DNA damage in epithelial cells, but this effect varied depending on the intestinal segment and the age of birds

    ArrayIDer: automated structural re-annotation pipeline for DNA microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems biology modeling from microarray data requires the most contemporary structural and functional array annotation. However, microarray annotations, especially for non-commercial, non-traditional biomedical model organisms, are often dated. In addition, most microarray analysis tools do not readily accept EST clone names, which are abundantly represented on arrays. Manual re-annotation of microarrays is impracticable and so we developed a computational re-annotation tool (<it>ArrayIDer</it>) to retrieve the most recent accession mapping files from public databases based on EST clone names or accessions and rapidly generate database accessions for entire microarrays.</p> <p>Results</p> <p>We utilized the Fred Hutchinson Cancer Research Centre 13K chicken cDNA array – a widely-used non-commercial chicken microarray – to demonstrate the principle that <it>ArrayIDer </it>could markedly improve annotation. We structurally re-annotated 55% of the entire array. Moreover, we decreased non-chicken functional annotations by 2 fold. One beneficial consequence of our re-annotation was to identify 290 pseudogenes, of which 66 were previously incorrectly annotated.</p> <p>Conclusion</p> <p><it>ArrayIDer </it>allows rapid automated structural re-annotation of entire arrays and provides multiple accession types for use in subsequent functional analysis. This information is especially valuable for systems biology modeling in the non-traditional biomedical model organisms.</p
    • …
    corecore