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Isospin-symmetry-violating class II and III contact terms are introduced
into the Skyrme energy density functional to account for charge dependence
of the strong nuclear interaction. The two new coupling constants are
adjusted to available experimental data on triplet and mirror displacement
energies, respectively. We present preliminary results of the fit, focusing
on its numerical stability with respect to the basis size.
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1. Introduction

An accurate description of atomic nucleus, a system of protons and neu-
trons interacting with electromagnetic and strong forces, is a difficult task.
It can be simplified considerably by introducing the concept of isospin sym-
metry [1] that relies on charge independence, that is, on equality of nucleon–
nucleon (NN) forces Vpp = Vpn = Vnn in the same space-spin channel. The
NN scattering experiments indicate, however, that the strong interaction
depends slightly on a pair of nucleons involved in the process [2]. On a fun-
damental level, violation of the isospin symmetry is due to the mass splitting
and different charges of the up and down quarks and the difference in quark
composition of proton and neutron.
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In atomic nuclei, the main source of isospin-symmetry breaking (ISB) is
the Coulomb force, which shifts binding energies of nuclei forming a multi-
plet of a given isospin T . This property is used to construct various mass
indicators which are sensitive to the ISB effects. The most common among
such indicators are the mirror (MDE) and triplet (TDE) displacement ener-
gies involving data on isospin doublets (T = 1

2) and triplets (T = 1). It turns
out, however, that the Coulomb interaction alone is not sufficient to fully
explain neither the MDEs nor the TDEs, and the additional ISB mechanism
due to the strong nuclear force might be of importance in the understanding
of the experimental data [3, 4].

Contemporary ab initio models are able to account for ISB effects in
both NN scattering data and light nuclei [5–7]. However, they are still not
suitable for describing heavier systems which is a domain of mean-field (MF)
or density functional theory (DFT). These approaches are excellent tools
to study bulk properties (masses, radii or quadrupole moments) in atomic
nuclei regardless of their mass and parity of proton and neutron numbers,
see [8] and references therein. Among different variants of MF or DFT
approaches, the models based on the Skyrme interaction [9] are the most
efficient computationally and fairly well describe nuclear binding energies.
However, the isospin invariant Skyrme energy density functionals (S-EDF)
[10, 11], which are typically used in practical applications, systematically
fail to reproduce the experimental data on MDEs and TDEs. In our recent
work [12], we introduced two new ISB terms into the S-EDF. They read1:

V̂ II(i, j) = tII0 δ (ri − rj)
(
1− xII

0 P̂
σ
ij

) [
3τ̂3(i)τ̂3(j)− ~̂τ(i) ◦ ~̂τ(j)

]
, (1)

V̂ III(i, j) = tIII0 δ (ri − rj)
(
1− xIII

0 P̂ σij

)
[τ̂3(i) + τ̂3(j)] . (2)

The first calculations performed with these modifications proved the ability
of the extended model to correctly grasp the missing ISB effects in both
the MDEs and TDEs, however, a systematic fitting of the new coupling
constants tII0 and tIII0 is necessary (xII

0 and xIII
0 turned out to be redundant).

In this paper, we present a discussion on the numerical stability of MDEs
and TDEs with respect to the choice of the basis size. The study allows us
to estimate a theoretical uncertainty associated with a given basis cut-off.
The discussion is followed by a presentation of preliminary results of the
fitting procedure performed with a certain basis cut-off.

1 Formulas given in Eqs. (3) and (4) in Ref. [12] contain, by mistake, a redundant
factor 1

2
. It does not affect numerical calculations.



Mirror and Triplet Displacement Energies Within Nuclear DFT . . . 261

2. Numerical stability

Nuclear calculations often depend on a choice of the basis size. Their
reliability and, in particular, predictive power requires an estimate of the-
oretical uncertainties related to the basis size. The HFODD code [13, 14]
used in this work solves the HF equation in the Cartesian harmonic os-
cillator (HO) basis. Its size can be controlled by providing a number of
spherical HO shells N . In practical applications, the choice of N is always a
matter of trade-off between computation time and expected precision of the
calculations.

To evaluate theoretical uncertainty of the calculated MDEs and TDEs
due to the basis size, we have performed test calculations for T = 1

2 doublets
with A = 25, 33, 57, and 75 and for T = 1 triplets with A = 22, 34, and 58.
Calculations have been performed using the spherical HO bases consisting
of N = 10, 12, 14, and 16 shells. For the heaviest doublets with A = 57 and
75, we have extended the test by including the bases consisting of N = 18
and 20 shells. In each case, we have computed the MDEs and TDEs using
three different S-EDF parametrizations, including the density-independent
SVT S-EDF of Refs. [15, 16], and two popular density-dependent S-EDFs
SkM∗ [17] and SLy4 [18]. Additionally, it has been checked that the new ISB
terms affect rather weakly the stability of the MDEs and the TDEs and, in
effect, the calculations were performed with tII0 and tIII0 as in Table I. Results
are collected in Figs. 1 and 2.

TABLE I

Values of the tII0 and tIII0 parameters with uncertainty and standard deviations for
MDE and TDE, σfit, resulting from the fit to all available data on isospin doublets
and triplets. The calculations has been done for three different S-EDFs considered
in this work.

Interaction SV SkM* SLy4
tII0 [MeV fm3] 17± 5 24± 8 22± 7
σfit [keV] 100 110 100

tIII0 [MeV fm3] −7.3± 1.9 −5.5± 1.3 −5.5± 1.1
σfit [keV] 190 150 120

The basis-size-dependence tests suggest that the optimal strategy re-
garding both efficiency and accuracy of the calculations is to compute light
(10 ≤ A ≤ 30), medium-mass nuclei (31 ≤ A ≤ 56), and heavy (A ≥ 57)
nuclei using bases consisting of N = 10, 12, and 14 spherical HO shells,
respectively. For both the MDEs and TDEs, this strategy would result
in the basis-size related uncertainty not exceeding ∆basis ≈ ±15 keV. As we
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show in Sec. 3, the basis-size uncertainty is relatively small as compared to
the uncertainty resulting from the fitting procedure, which may justify using
even smaller bases.
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Fig. 1. (Colour on-line) Values of MDEs in function of the number of spherical HO
shells used in the basis, plotted with respect to that obtained for N = 12. Results
for multiplets with different values of A are labelled with different symbols, as
shown in the legend. Panels (a), (b), and (c) show values obtained using SVT,
SkM*, and SLy4 S-EDFs, respectively.
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Fig. 2. (Colour on-line) The same as in Fig. 1, but for the TDEs.
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3. Results of fitting

As stated in Sec. 2, the optimum choice of the number of spherical HO
shells implies dividing the mass region of interest into the three subsets. In
the present preliminary study, we use N = 10 shells for all nuclei having
masses 10 ≤ A ≤ 56 and 58, and we use N = 14 shells only for the heav-
iest systems. This choice almost doubles the basis-size related uncertainty
of the calculated MDEs to ∆basis ≈ ±30 keV without much affecting the
uncertainty of the calculated TDEs. A smaller computational time allows
us to explore the richness of experimental data available for ISB effects in
the 10 ≤ A ≤ 58 nuclei. In future, it may allow us to perform calculations
of mirror and triplet energy differences in rotational bands or the ISB ef-
fects in electromagnetic and β decays using the recently developed no-core
configuration–interaction (NCCI) formalism [19], which involves CPU time
demanding isospin and angular momentum projections and configuration
mixing.

With the less strict choice of the basis size, the two new coupling con-
stants (see Ref. [12]) were adjusted to all available data [20, 21] on MDEs
(10 ≤ A ≤ 75) and TDEs (10 ≤ A ≤ 58). The fitting procedure has been
realized independently for tII0 and tIII0 parameters using linear regression
method and following the guidelines from Ref. [22] and will be described in
details in our forthcoming publication. The fitting results as well as the stan-
dard deviations from the experimental data points are presented in Table I.

As it turns out, the uncertainty resulting from the choice of the basis
cut-off, ∆basis, is small with respect to the values of standard deviations,
σfit, given in Table I. Hence, in the total uncertainty, ∆T =

√
σ2

fit +∆2
basis,

the basis-size related uncertainty constitutes only a small correction.

4. Summary

In the paper, we performed preliminary calculations of MDEs and TDEs
paying special attention to the numerical stability of the results with respect
to the basis size. It turned out that the optimum choice of the number of
spherical HO shells, N , which defines the basis size, is N = 10 for light nuclei
(10 ≤ A ≤ 30), N = 12 for medium-mass nuclei (31 ≤ A ≤ 56) and N = 14
for heavy nuclei (A ≥ 57). It is shown that the corresponding uncertainty,
∆basis = ±15 keV, is small as compared to the uncertainty coming from the
fitting procedure. This allows us to compute light and medium-mass nuclei
using the basis consisting only of N = 10 HO shells without loosing much of
the precision. Smaller basis, in turn, will be beneficial regarding efficiency
of the planned NCCI calculations. Finally, the two new coupling constants
were adjusted to all available experimental data. The details of the fitting
procedure will be presented in the forthcoming publications.
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