21 research outputs found

    Space-time segmentation method for study of the vertical structure and evolution of solar supergranulation from data provided by local helioseismology

    Full text link
    Solar supergranulation remains a mystery in spite of decades of intensive studies. Most of the papers about supergranulation deal with its surface properties. Local helioseismology provides an opportunity to look below the surface and see the vertical structure of this convective structure. We present a concept of a (3+1)-D segmentation algorithm capable of recognising individual supergranules in a sequence of helioseismic 3-D flow maps. As an example, we applied this method to the state-of-the-art data and derived descriptive statistical properties of segmented supergranules -- typical size of 20--30 Mm, characteristic lifetime of 18.7 hours, and estimated depth of 15--20 Mm. We present preliminary results obtained on the topic of the three-dimensional structure and evolution of supergranulation. The method has a great potential in analysing the better data expected from the helioseismic inversions, which are being developed.Comment: 6 pages, 4 figures, accepted in New Astronom

    Large-scale horizontal flows in the solar photosphere V: Possible evidence for the disconnection of bi-polar sunspot groups from their magnetic roots

    Full text link
    In a recent paper (Svanda et al., 2008, A&A 477, 285) we pointed out that, based on the tracking of Doppler features in the full-disc MDI Dopplergrams, the active regions display two dynamically different regimes. We speculated that this could be a manifestation of the sudden change in the active regions dynamics, caused by the dynamic disconnection of sunspots from their magnetic roots as proposed by Schuessler & Rempel (2005, A&A 441, 337). Here we investigate the dynamic behaviour of the active regions recorded in the high-cadence MDI data over the last solar cycle in order to confirm the predictions in the Schuessler's & Rempel's paper. We find that, after drastic reduction of the sample, which is done to avoid disturbing effects, a large fraction of active regions displays a sudden decrease in the rotation speed, which is compatible with the mechanism of the dynamic disconnection of sunspots from their parental magnetic structures.Comment: 11 pages, 9 figures, 1 table; accepted in Astronomy & Astrophysic

    Large-scale horizontal flows in the solar photosphere II: Long-term behaviour and magnetic activity response

    Full text link
    Recently, we have developed a method useful for mapping large-scale horizontal velocity fields in the solar photosphere. The method was developed, tuned and calibrated using the synthetic data. Now, we applied the method to the series of Michelson Doppler Imager (MDI) dopplergrams covering almost one solar cycle in order to get the information about the long-term behaviour of surface flows. We have found that our method clearly reproduces the widely accepted properties of mean flow field components, such as torsional oscillations and a pattern of meridional circulation. We also performed a periodic analysis, however due to the data series length and large gaps we did not detect any significant periods. The relation between the magnetic activity influencing the mean zonal motion is studied. We found an evidence that the emergence of compact magnetic regions locally accelerates the rotation of supergranular pattern in their vicinity and that the presence of magnetic fields generally decelerates the rotation in the equatorial region. Our results show that active regions in the equatorial region emerge exhibiting a constant velocity (faster by 60 +/- 9 m/s than Carrington rate) suggesting that they emerge from the base of the surface radial shear at 0.95 R_sun, disconnect from their magnetic roots, and slow down during their evolution.Comment: 9 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    Large-scale horizontal flows in the solar photosphere I: Method and tests on synthetic data

    Get PDF
    We propose a useful method for mapping large-scale velocity fields in the solar photosphere. It is based on the local correlation tracking algorithm when tracing supergranules in full-disc dopplergrams. The method was developed using synthetic data. The data processing the data are transformed during the data processing into a suitable coordinate system, the noise is removed, and finally the velocity field is calculated. Resulting velocities are compared with the model velocities and the calibration is done. From our results it becomes clear that this method could be applied to full-disc dopplergrams acquired by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SoHO).Comment: Accepted in Astronomy and Astrophycic

    A retrospective of the GREGOR solar telescope in scientific literature

    Full text link
    In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post-focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer-reviewed journals and conference proceedings also provides the "historical" context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes.Comment: 6 pages, 2 color figures, this is the pre-peer reviewed version of Denker et al. 2012, Astron. Nachr. 333, 81

    Large-scale horizontal flows in the solar photosphere. IV. On the vertical structure of large-scale horizontal flows

    Full text link
    In the recent papers, we introduced a method utilised to measure the flow field. The method is based on the tracking of supergranular structures. We did not precisely know, whether its results represent the flow field in the photosphere or in some sub-photospheric layers. In this paper, in combination with helioseismic data, we are able to estimate the depths in the solar convection envelope, where the detected large-scale flow field is well represented by the surface measurements. We got a clear answer to question what kind of structures we track in full-disc Dopplergrams. It seems that in the quiet Sun regions the supergranular structures are tracked, while in the regions with the magnetic field the structures of the magnetic field are dominant. This observation seems obvious, because the nature of Doppler structures is different in the magnetic regions and in the quiet Sun. We show that the large-scale flow detected by our method represents the motion of plasma in layers down to ~10 Mm. The supergranules may therefore be treated as the objects carried by the underlying large-scale velocity field.Comment: 8 pages, 5 figures, accepted in New Astronom
    corecore