2,917 research outputs found

    Composition of leachate from old landfills in Denmark

    Get PDF

    Dissemination of the revitalised FSR/FEH rainfall-runoff method

    Get PDF

    AME - Asteroseismology Made Easy. Estimating stellar properties by use of scaled models

    Full text link
    We present a new method to obtain stellar properties for stars exhibiting solar-like oscillations in an easy, fast, and transparent way. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean-densities, radii, and surface gravities, as well as estimate ages. In this writing we present AME as a visual and powerful tool which could be useful; in particular in the light of the large number of exoplanets being found. AME consists of a set of figures from which the stellar parameters are deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 Msun to 1.6 Msun in steps of 0.1 Msun and metallicities in the interval -0.3 dex <= [Fe/H] <= +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. We have compared the results from AME with results for three groups of stars; stars with radii determined from interferometry (and measured parallaxes), stars with radii determined from measurements of their parallaxes (and calculated angular diameters), and stars with results based on the modelling of their individual oscillation frequencies. We find that a comparison of the radii from interferometry to those from AME yield a weighted mean of the fractional differences of just 2%. This is also the level of deviation that we find when we compare the parallax-based radii to the radii determined from AME. The comparison between independently determined stellar parameters and those found using AME show that our method can provide reliable stellar masses, radii, and ages, with median uncertainties in the order of 4%, 2%, and 25% respectively.Comment: 18 pages, 25 figures. To be published in Astronomy & Astrophysic

    A review of applied methods in Europe for flood-frequency analysis in a changing environment

    Get PDF
    The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines. Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate

    Asteroseismology of the Transiting Exoplanet Host HD 17156 with HST FGS

    Full text link
    Observations conducted with the Fine Guidance Sensor on Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in December 2008 on the host star of the transiting exoplanet HD 17156b. During this time 10^12 photons (corrected for detector deadtime) were collected in which a noise level of 163 parts per million per 30 second sum resulted, thus providing excellent sensitivity to detection of the analog of the solar 5-minute p-mode oscillations. For HD 17156 robust detection of p-modes supports determination of the stellar mean density of 0.5301 +/- 0.0044 g/cm^3 from a detailed fit to the observed frequencies of modes of degree l = 0, 1, and 2. This is the first star for which direct determination of the mean stellar density has been possible using both asteroseismology and detailed analysis of a transiting planet light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M_star = 1.285 +/- 0.026 solar, R_star = 1.507 +/- 0.012 solar, and a stellar age of 3.2 +/- 0.3 Gyr.Comment: Accepted by ApJ; 16 pages, 18 figure

    Blade load dynamics in cavitating and two phase flows

    Full text link
    A comparative study of lift dynamics on a hydrofoil and inlet pressure dynamics on a pump impeller vane is described in this paper. The hydrofoil, a rectangular planform NACA 0015 with a chord length of c=0.081m, fitted with a special arrangement that allowed the injection of gas downstream of the minimum pressure point, was tested in the St Anthony Falls Laboratory (SAFL) closed loop water tunnel at the University of Minnesota. The SAFL water tunnel is specially suited for gas injection type measurements due to high gas removal capabilities. The tests on the hydrofoil also included a full range of cavitation experiments. The pump tests were made at the Waterpower Laboratory at the Norwegian University of Science and Technology (NTNU). Upstream of the pump inlet a special bubble injection device was located. This arrangement allows a controlled amount of gas to enter the flow. The water and gas flow rates were measured separately. Lift measurements from the hydrofoil study display a striking similarity between gas loaded and cavitation lift dynamics. The pump dynamics data show a maximum for a moderate gas void fraction. It is also observed that a more pronounced low frequency dynamics is present for the gas-loaded systems.http://deepblue.lib.umich.edu/bitstream/2027.42/84294/1/CAV2009-final113.pd

    Solar-like oscillations of semiregular variables

    Get PDF
    Oscillations of the Sun and solar-like stars are believed to be excited stochastically by convection near the stellar surface. Theoretical modeling predicts that the resulting amplitude increases rapidly with the luminosity of the star. Thus one might expect oscillations of substantial amplitudes in red giants with high luminosities and vigorous convection. Here we present evidence that such oscillations may in fact have been detected in the so-called semiregular variables, extensive observations of which have been made by amateur astronomers in the American Association for Variable Star Observers (AAVSO). This may offer a new opportunity for studying the physical processes that give rise to the oscillations, possibly leading to further information about the properties of convection in these stars.Comment: Astrophys. J. Lett., in the press. Processed with aastex and emulateap

    Solar-like oscillations in the G8 V star tau Ceti

    Full text link
    We used HARPS to measure oscillations in the low-mass star tau Cet. Although the data were compromised by instrumental noise, we have been able to extract the main features of the oscillations. We found tau Cet to oscillate with an amplitude that is about half that of the Sun, and with a mode lifetime that is slightly shorter than solar. The large frequency separation is 169 muHz, and we have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to estimate the mean density of the star to an accuracy of 0.45% which, combined with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).Comment: accepted for publication in A&

    Estimating stellar mean density through seismic inversions

    Full text link
    Determining the mass of stars is crucial both to improving stellar evolution theory and to characterising exoplanetary systems. Asteroseismology offers a promising way to estimate stellar mean density. When combined with accurate radii determinations, such as is expected from GAIA, this yields accurate stellar masses. The main difficulty is finding the best way to extract the mean density from a set of observed frequencies. We seek to establish a new method for estimating stellar mean density, which combines the simplicity of a scaling law while providing the accuracy of an inversion technique. We provide a framework in which to construct and evaluate kernel-based linear inversions which yield directly the mean density of a star. We then describe three different inversion techniques (SOLA and two scaling laws) and apply them to the sun, several test cases and three stars. The SOLA approach and the scaling law based on the surface correcting technique described by Kjeldsen et al. (2008) yield comparable results which can reach an accuracy of 0.5 % and are better than scaling the large frequency separation. The reason for this is that the averaging kernels from the two first methods are comparable in quality and are better than what is obtained with the large frequency separation. It is also shown that scaling the large frequency separation is more sensitive to near-surface effects, but is much less affected by an incorrect mode identification. As a result, one can identify pulsation modes by looking for an l and n assignment which provides the best agreement between the results from the large frequency separation and those from one of the two other methods. Non-linear effects are also discussed as is the effects of mixed modes. In particular, it is shown that mixed modes bring little improvement as a result of their poorly adapted kernels.Comment: Accepted for publication in A&A, 20 pages, 19 figure
    • …
    corecore