619 research outputs found

    Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2_2 battery capacity

    Full text link
    Among the 'beyond Li-ion' battery chemistries, nonaqueous Li-O2_2 batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O2_2 batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than four-fold) in Li-O2_2 cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using 7^7Li nuclear magnetic resonance and modeling, we confirm that this improvement is a result of enhanced Li+^+ stability in solution, which in turn induces solubility of the intermediate to Li2_2O2_2 formation. Using this strategy, the challenging task of identifying an electrolyte solvent that possesses the anti-correlated properties of high intermediate solubility and solvent stability is alleviated, potentially providing a pathway to develop an electrolyte that affords both high capacity and rechargeability. We believe the model and strategy presented here will be generally useful to enhance Coulombic efficiency in many electrochemical systems (e.g. Li-S batteries) where improving intermediate stability in solution could induce desired mechanisms of product formation.Comment: 22 pages, 5 figures and Supporting Informatio

    Devitrification of ultrafast laser plasma produced metastable glass layer

    Get PDF
    Erbium-doped tellurite modified silica (EDTS) is a newly formulated silicate glass that has the potential to realize on-chip optical amplifiers. The devitrification process of EDTS layer on host silica glass has been studied in the temperature range 300 °C–1000 °C. In-situ high-temperature X-ray diffraction, selective area electron diffraction and high-resolution transmission electron microscopy revealed the amorphous phase of EDTS as-fabricated up to 600 °C and rapid irreversible crystalline phase developments above 600 °C, contrasting the host silica. Distinct structural evolutions of EDTS with the variation in temperature were observed, including a complete evaporation of TeO2 at 800 °C from the matrix

    Complication of Salmonella Bacteremia in a Case of Treated Fungal Endophthalmitis

    Get PDF
    This is to report a case of bacteremia caused by Salmonella typhi in a treated unilateral fungal endogenous endophthalmitis in an 18-year-old male from one of the South Asian countries. Microbiological and molecular investigations were carried out on the eviscerated material and routine blood culture was carried out. Direct examination of eviscerated material revealed the presence of fungal filaments. However, Salmonella typhi was isolated from both specimens, which was confirmed by Polymerase chain reaction targeting the 16SrRNA gene, sequencing, and random amplification of polymorphic DNA showed that they belonged to the same clone. The presence of Salmonella bacteremia in a treated unilateral fungal endophthalmitis, among young adult patients is rare and systemic symptoms should be investigated

    Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension

    Get PDF
    BACKGROUND AND AIMS: Hepatic stellate cells (HSCs) are vital to hepatocellular function and the liver response to injury. They share a phenotypic homology with astrocytes that are central in the pathogenesis of hepatic encephalopathy, a condition in which hyperammonemia plays a pathogenic role. This study tested the hypothesis that ammonia modulates human HSC activation in vitro and in vivo, and evaluated whether ammonia lowering, by using l-ornithine phenylacetate (OP), modifies HSC activation in vivo and reduces portal pressure in a bile duct ligation (BDL) model. METHODS: Primary human HSCs were isolated and cultured. Proliferation (BrdU), metabolic activity (MTS), morphology (transmission electron, light and immunofluorescence microscopy), HSC activation markers, ability to contract, changes in oxidative status (ROS) and endoplasmic reticulum (ER) were evaluated to identify effects of ammonia challenge (50 μM, 100 μM, 300 μM) over 24–72 h. Changes in plasma ammonia levels, markers of HSC activation, portal pressure and hepatic eNOS activity were quantified in hyperammonemic BDL animals, and after OP treatment. RESULTS: Pathophysiological ammonia concentrations caused significant and reversible changes in cell proliferation, metabolic activity and activation markers of hHSC in vitro. Ammonia also induced significant alterations in cellular morphology, characterised by cytoplasmic vacuolisation, ER enlargement, ROS production, hHSC contraction and changes in pro-inflammatory gene expression together with HSC-related activation markers such as α-SMA, myosin IIa, IIb, and PDGF-Rβ. Treatment with OP significantly reduced plasma ammonia (BDL 199.1 μmol/L ± 43.65 vs. BDL + OP 149.27 μmol/L ± 51.1, p <0.05) and portal pressure (BDL 14 ± 0.6 vs. BDL + OP 11 ± 0.3 mmHg, p <0.01), which was associated with increased eNOS activity and abrogation of HSC activation markers. CONCLUSIONS: The results show for the first time that ammonia produces deleterious morphological and functional effects on HSCs in vitro. Targeting ammonia with the ammonia lowering drug OP reduces portal pressure and deactivates hHSC in vivo, highlighting the opportunity for evaluating ammonia lowering as a potential therapy in cirrhotic patients with portal hypertension

    Comparing inclination-dependent analyses of kilonova transients

    Get PDF
    The detection of the optical transient AT2017gfo proved that binary neutron star mergers are progenitors of kilonovae (KNe).Using a combination of numerical-relativity and radiative-transfer simulations, the community has developed sophisticated models for these transients for a wide portion of the expected parameter space. Using these simulations and surrogate models made from them, it has been possible to perform Bayesian inference of the observed signals to infer properties of the ejected matter. It has been pointed out that combining inclination constraints derived from the KN with gravitational-wavemeasurements increases the accuracy with which binary parameters can be estimated, in particular breaking the distance-inclination degeneracy from gravitational wave inference. To avoid bias from the unknown ejecta geometry, constraints on the inclination angle for AT2017gfo should be insensitive to the employed models. In this work, we compare different assumptions about the ejecta and radiative reprocesses used by the community and we investigate their impact on the parameter inference. While most inferred parameters agree, we find disagreement between posteriors for the inclination angle for different geometries that have been used in the current literature. According to our study, the inclusion of reprocessing of the photons between different ejecta types improves the modeling fits to AT2017gfo and, in some cases, affects the inferred constraints. Our study motivates the inclusion of large ~1-mag uncertainties in the KN models employed for Bayesian analysis to capture yet unknown systematics, especially when inferring inclination angles, although smaller uncertainties seem appropriate to capture model systematics for other intrinsic parameters. We can use this method to impose soft constraints on the ejecta geometry of the KN AT2017gfo

    Standardizing kilonovae and their use as standard candles to measure the Hubble constant

    Get PDF
    The detection of GW170817 is revolutionizing many areas of astrophysics with the joint observation of gravitational waves and electromagnetic emissions. These multimessenger events provide a new approach to determine the Hubble constant, thus, they are a promising candidate for mitigating the tension between measurements of type-Ia supernovae via the local distance ladder and the cosmic microwave background. In addition to the "standard siren"provided by the gravitational-wave measurement, the kilonova itself has characteristics that allow one to improve existing measurements or to perform yet another, independent measurement of the Hubble constant without gravitational-wave information. Here, we employ standardization techniques borrowed from the type-Ia community and apply them to kilonovae, not using any information from the gravitational-wave signal. We use two versions of this technique, one derived from direct observables measured from the light curve, and the other based on inferred ejecta parameters, e.g., mass, velocity, and composition, for two different models. These lead to Hubble constant measurements of H0=109-35+49 km s-1 Mpc-1 for the measured analysis, and H0=85-17+22 km s-1 Mpc-1 and H0=79-15+23 km s-1 Mpc-1 for the inferred analyses. This measurement has error bars within ∼2 to the gravitational-wave measurements (H0=74-8+16 km s-1 Mpc-1), showing its promise as an independent constraint on H0

    Measuring the Hubble constant with a sample of kilonovae

    Get PDF
    Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant (H0). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for H0 contraints. Here, we show measurement of H0 using light curves associated with four sGRBs, assuming these are attributable to kilonovae, combined with GW170817. Including a systematic uncertainty on the models that is as large as the statistical ones, we find H0 ¼ 73:8þ6:3 5:8 km s1 Mpc1 and H0 ¼ 71:2þ3:2 3:1 km s1 Mpc1 for two different kilonova models that are consistent with the local and inverse-distance ladder measurements. For a given model, this measurement is about a factor of 2-3 more precise than the standard-siren measurement for GW170817 using only GWs

    TOpic: rare and special cases, the real "Strange cases"

    Get PDF
    Introduction: The bladder hernia represents approximately 1-3% of all inguinal hernias, where patients aged more than 50 years have a higher incidence (10%). Many factors contribute to the development of a bladder hernia, including the presence of a urinary outlet obstruction causing chronic bladder distention, the loss of bladder tone, pericystitis, the perivesical bladder fat protrusion and the obesity
    corecore