36 research outputs found

    Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM analyses

    Get PDF
    Additive manufacturing is being increasingly used in the fabrication of Ti-6Al-4V parts to combine excellent mechanical properties and biocompatibility with high precision. Unfortunately, due to the build-up of thermal residual stresses and the formation of martensitic structure across a wide range of typical processing conditions, it is generally necessary to use a post-thermal treatment to achieve superior mechanical performance. This investigation aims to obtain a deeper understanding of the microManostructural evolution (alpha' martensite phase decomposition), accounting for the kinetics of phase transformation during the heat treatment of 3D-printed Ti-6Al-4V alloy. As the mechanism of phase transformation and stress relaxation is still ambiguous, in this study the changes in crystal lattice, phase, composition and lattice strain were investigated up to 1000 degrees C using both in situ high temperature X-ray diffraction (XRD) and transmission electron microscopy (TEM). Based on the result a mechanism of phase transformation is proposed, via the accommodation/substitution of Al, V and Ti atoms in the crystal lattice. The proposed mechanism is supported based on elemental concentration changes during heat treatment, in combination with changes in crystal structure observed using the high temperature XRD and TEM measurements. This study provides a deeper understanding on the mechanism of phase transformation through martensitic decomposition, as well as a deeper understanding of the influence of post-thermal treatment conditions on the alloy's crystal structure. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Willing and able: action-state orientation and the relation between procedural justice and employee cooperation

    Get PDF
    Existing justice theory explains why fair procedures motivate employees to adopt cooperative goals, but it fails to explain how employees strive towards these goals. We study self-regulatory abilities that underlie goal striving; abilities that should thus affect employees’ display of cooperative behavior in response to procedural justice. Building on action control theory, we argue that employees who display effective self-regulatory strategies (action oriented employees) display relatively strong cooperative behavioral responses to fair procedures. A multisource field study and a laboratory experiment support this prediction. A subsequent experiment addresses the process underlying this effect by explicitly showing that action orientation facilitates attainment of the cooperative goals that people adopt in response to fair procedures, thus facilitating the display of actual cooperative behavior. This goal striving approach better integrates research on the relationship between procedural justice and employee cooperation in the self-regulation and the work motivation literature. It also offers organizations a new perspective on making procedural justice effective in stimulating employee cooperation by suggesting factors that help employees reach their adopted goals

    Improved Learning and Memory in Aged Mice Deficient in Amyloid β-Degrading Neutral Endopeptidase

    Get PDF
    BACKGROUND: Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-beta (Abeta) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. METHODOLOGY/PRINCIPAL FINDINGS: We found that while endogenous Abeta concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Abeta deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Abeta degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. CONCLUSIONS/SIGNIFICANCE: Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases

    L’air de famille entre deux grandes figures de la littérature-monde : Johann Wolfgang Goethe et Rabindranath Tagore

    No full text
    International audienceno abstrac

    GeSn heterojunction LEDs on Si substrates

    No full text
    GeSn on Si light-emitting diodes (LEDs) is investigated for different Sn concentrations up to 4.2% and they are compared with an LED made from pure Ge on Si. The LEDs are realized from in-situ doped pin junctions in GeSn on Ge virtual substrates. The device structures are grown with a special ultra-low temperature molecular beam epitaxy process. All LEDs clearly show direct bandgap electroluminescence emission at room temperature. The light intensity of the compressively strained GeSn LEDs increases with higher Sn concentration. The in-plane strain of the LEDs is determined with reciprocal space mapping. The bandgap energies of the emitting GeSn layer are calculated from the emission spectra
    corecore