223 research outputs found

    A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular immunity and protects against lethal west nile virus infection in aged mice

    Get PDF
    West Nile virus (WNV) is an emerging pathogen that is now the leading cause of mosquito-borne and epidemic encephalitis in the United States. In humans, a small percentage of infected individuals develop severe neuroinvasive disease, with the greatest relative risk being in the elderly and immunocompromised, two populations that are difficult to immunize effectively with vaccines. While inactivated and subunit-based veterinary vaccines against WNV exist, currently there is no vaccine or therapy available to prevent or treat human disease. Here, we describe the generation and preclinical efficacy of a hydrogen peroxide (H(2)O(2))-inactivated WNV Kunjin strain (WNV-KUNV) vaccine as a candidate for further development. Both young and aged mice vaccinated with H(2)O(2)-inactivated WNV-KUNV produced robust adaptive B and T cell immune responses and were protected against stringent and lethal intracranial challenge with a heterologous virulent North American WNV strain. Our studies suggest that the H(2)O(2)-inactivated WNV-KUNV vaccine is safe and immunogenic and may be suitable for protection against WNV infection in vulnerable populations

    The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors

    Get PDF
    The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs

    IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life

    Get PDF
    BACKGROUND: Data suggest that antibody responses to malaria parasites merozoite antigens are generally short-lived and this has implications for serological studies and malaria vaccine designs. However, precise data on the kinetics of these responses is lacking. METHODS: IgG1 and IgG3 responses to five recombinant Plasmodium falciparum merozoite antigens (MSP-119, MSP-2 type A and B, AMA-1 ectodomain and EBA-175 region II) among Kenyan children were monitored using ELISA for 12 weeks after an acute episode of malaria and their half-lives estimated using an exponential decay model. RESULTS: The responses peaked mainly at week 1 and then decayed rapidly to very low levels within 6 weeks. Estimation of the half-lives of 40 IgG1 responses yielded a mean half-life of 9.8 days (95% CI: 7.6-12.0) while for 16 IgG3 responses it was 6.1 days (95% CI: 3.7-8.4), periods that are shorter than those normally described for the catabolic half-life of these antibody subclasses. CONCLUSION: This study indicates antibodies against merozoite antigens have very short half-lives and this has to be taken into account when designing serological studies and vaccines based on the antigens

    Automatic recognition of schwa variants in spontaneous Hungarian speech

    Get PDF
    This paper analyzes the nature of the process involved in optional vowel reduction in Hungarian, and the acoustic structure of schwa variants in spontaneous speech. The study focuses on the acoustic patterns of both the basic realizations of Hungarian vowels and their realizations as neutral vowels (schwas), as well as on the design, implementation, and evaluation of a set of algorithms for the recognition of both types of realizations from the speech waveform. The authors address the question whether schwas form a unified group of vowels or they show some dependence on the originally intended articulation of the vowel they stand for. The acoustic study uses a database consisting of over 4,000 utterances extracted from continuous speech, and recorded from 19 speakers. The authors propose methods for the recognition of neutral vowels depending on the various vowels they replace in spontaneous speech. Mel-Frequency Cepstral Coefficients are calculated and used for the training of Hidden Markov Models. The recognition system was trained on 2,500 utterances and then tested on 1,500 utterances. The results show that a neutral vowel can be detected in 72% of all occurrences. Stressed and unstressed syllables can be distinguished in 92% of all cases. Neutralized vowels do not form a unified group of phoneme realizations. The pronunciation of schwa heavily depends on the original articulation configuration of the intended vowel

    CD4+ and CD8+ T Cells Can Act Separately in Tumour Rejection after Immunization with Murine Pneumotropic Virus Chimeric Her2/neu Virus-Like Particles

    Get PDF
    BACKGROUND: Immunization with murine pneumotropic virus virus-like particles carrying Her2/neu (Her2MPtVLPs) prevents tumour outgrowth in mice when given prophylactically, and therapeutically if combined with the adjuvant CpG. We investigated which components of the immune system are involved in tumour rejection, and whether long-term immunological memory can be obtained. METHODOLOGY AND RESULTS: During the effector phase in BALB/c mice, only depletion of CD4+ and CD8+ in combination, with or without NK cells, completely abrogated tumour protection. Depletion of single CD4+, CD8+ or NK cell populations only had minor effects. During the immunization/induction phase, combined depletion of CD4+ and CD8+ cells abolished protection, while depletion of each individual subset had no or negligible effect. When tumour rejection was studied in knock-out mice with a C57Bl/6 background, protection was lost in CD4-/-CD8-/- and CD4-/-, but not in CD8-/- mice. In contrast, when normal C57Bl/6 mice were depleted of different cell types, protection was lost irrespective of whether only CD4+, only CD8+, or CD4+ and CD8+ cells in combination were eradicated. No anti-Her2/neu antibodies were detected but a Her2/neu-specific IFNgamma response was seen. Studies of long-term memory showed that BALB/c mice could be protected against tumour development when immunized together with CpG as long as ten weeks before challenge. CONCLUSION: Her2MPtVLP immunization is efficient in stimulating several compartments of the immune system, and induces an efficient immune response including long-term memory. In addition, when depleting mice of isolated cellular compartments, tumour protection is not as efficiently abolished as when depleting several immune compartments together

    Functional Memory B Cells and Long-Lived Plasma Cells Are Generated after a Single Plasmodium chabaudi Infection in Mice

    Get PDF
    Antibodies have long been shown to play a critical role in naturally acquired immunity to malaria, but it has been suggested that Plasmodium-specific antibodies in humans may not be long lived. The cellular mechanisms underlying B cell and antibody responses are difficult to study in human infections; therefore, we have investigated the kinetics, duration and characteristics of the Plasmodium-specific memory B cell response in an infection of P. chabaudi in mice. Memory B cells and plasma cells specific for the C-terminal region of Merozoite Surface Protein 1 were detectable for more than eight months following primary infection. Furthermore, a classical memory response comprised predominantly of the T-cell dependent isotypes IgG2c, IgG2b and IgG1 was elicited upon rechallenge with the homologous parasite, confirming the generation of functional memory B cells. Using cyclophosphamide treatment to discriminate between long-lived and short-lived plasma cells, we demonstrated long-lived cells secreting Plasmodium-specific IgG in both bone marrow and in spleens of infected mice. The presence of these long-lived cells was independent of the presence of chronic infection, as removal of parasites with anti-malarial drugs had no impact on their numbers. Thus, in this model of malaria, both functional Plasmodium-specific memory B cells and long-lived plasma cells can be generated, suggesting that defects in generating these cell populations may not be the reason for generating short-lived antibody responses

    Distinct Kinetics of Memory B-Cell and Plasma-Cell Responses in Peripheral Blood Following a Blood-Stage Plasmodium chabaudi Infection in Mice

    Get PDF
    B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD− IgM− CD19+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on seven research projects.National Institutes of Health Grant P01-DC-00119National Institutes of Health Grant R01-DC-00194National Institutes of Health Grant R01 DC00238National Institutes of Health Grant R01-DC02258National Institutes of Health Grant T32-DC00038National Institutes of Health Grant P01-DC00361National Institutes of Health Grant 2RO1 DC00235National Institutes of Health Contract N01-DC2240

    Induction of Plasmodium falciparum-Specific CD4+ T Cells and Memory B Cells in Gabonese Children Vaccinated with RTS,S/AS01E and RTS,S/AS02D

    Get PDF
    The recombinant circumsporozoite protein (CS) based vaccine, RTS,S, confers protection against Plasmodium falciparum infection in controlled challenge trials and in field studies. The RTS,S recombinant antigen has been formulated with two adjuvant systems, AS01 and AS02, which have both been shown to induce strong specific antibody responses and CD4 T cell responses in adults. As infants and young children are particularly susceptible to malaria infection and constitute the main target population for a malaria vaccine, we have evaluated the induction of adaptive immune responses in young children living in malaria endemic regions following vaccination with RTS,S/AS01(E) and RTS,S/AS02(D). Our data show that a CS-specific memory B cell response is induced one month after the second and third vaccine dose and that CS-specific antibodies and memory B cells persist up to 12 months after the last vaccine injection. Both formulations also induced low but significant amounts of CS-specific IL-2(+) CD4(+) T cells one month after the second and third vaccine dose, upon short-term in vitro stimulation of whole blood cells with peptides covering the entire CS derived sequence in RTS,S. These results provide evidence that both RTS,S/AS01(E) and RTS,S/AS02(D) induced adaptive immune responses including antibodies, circulating memory B cells and CD4(+) T cells directed against P. falciparum CS protein.ClinicalTrials.gov NCT00307021

    Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN+-dendritic cells

    Get PDF
    Dendritic cells (DC) are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40) is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4) and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN)+ DC were analyzed by flow cytometry (FCM) and mixed lymphocyte reaction (MLR). Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC
    • …
    corecore