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A Hydrogen Peroxide-Inactivated Virus Vaccine Elicits Humoral and
Cellular Immunity and Protects against Lethal West Nile Virus
Infection in Aged Mice

Amelia K. Pinto,a Justin M. Richner,a Elizabeth A. Poore,d Pradnya P. Patil,d Ian J. Amanna,d Mark K. Slifka,e Michael S. Diamonda,b,c

Departments of Medicine,a Molecular Microbiology,b and Pathology & Immunology,c Washington University School of Medicine, St. Louis, Missouri, USA; Najít
Technologies, Beaverton, Oregon, USAd; Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, Oregon, USAe

West Nile virus (WNV) is an emerging pathogen that is now the leading cause of mosquito-borne and epidemic encephalitis in
the United States. In humans, a small percentage of infected individuals develop severe neuroinvasive disease, with the greatest
relative risk being in the elderly and immunocompromised, two populations that are difficult to immunize effectively with vac-
cines. While inactivated and subunit-based veterinary vaccines against WNV exist, currently there is no vaccine or therapy avail-
able to prevent or treat human disease. Here, we describe the generation and preclinical efficacy of a hydrogen peroxide (H2O2)-
inactivated WNV Kunjin strain (WNV-KUNV) vaccine as a candidate for further development. Both young and aged mice
vaccinated with H2O2-inactivated WNV-KUNV produced robust adaptive B and T cell immune responses and were protected
against stringent and lethal intracranial challenge with a heterologous virulent North American WNV strain. Our studies sug-
gest that the H2O2-inactivated WNV-KUNV vaccine is safe and immunogenic and may be suitable for protection against WNV
infection in vulnerable populations.

In the United States between 1999 and 2012, an estimated 3
million people were infected with West Nile virus (WNV), re-

sulting in over 780,000 illnesses, greater than 36,500 confirmed
cases, and 1,500 deaths (1; http://www.cdc.gov/ncidod/dvbid
/westnile/index.htm). While the past few years have been charac-
terized by lower-level endemic transmission to humans, 2012 has
witnessed new and intense outbreaks of WNV neuroinvasive dis-
ease in several regions of the United States and Europe. While
most WNV-infected individuals experience a mild or self-limiting
febrile illness, a fraction (�1%) of cases progress to severe neuro-
logical manifestations, including high and sustained fever, head-
ache, myalgia, meningitis, encephalitis, or acute flaccid paralysis
(2). Advanced age and immunosuppression are risks for the de-
velopment of severe WNV disease (2–5). Although the worldwide
incidence of WNV infection is increasing (6), there is no specific
treatment or vaccine available for use in humans (7).

WNV is a member of the Flaviviridae family of positive-
stranded RNA viruses, which includes the globally relevant hu-
man pathogens dengue virus (DENV), yellow fever virus (YFV),
and Japanese encephalitis virus (JEV). WNV was originally iso-
lated from a febrile patient in Uganda in 1937, and phylogenetic
analysis separates WNV into five distinct but genetically related
lineages based on nucleic acid sequence divergence (8–11).
Lineage 1 strains are considered emerging and associated with
outbreaks of neuroinvasive disease (10, 12); they originate from
diverse geographic regions and include WNV New York (WNV-
NY), which initiated the WNV epidemic in the United States, and
WNV Kunjin (WNV-KUNV), which is a nonvirulent strain of
WNV circulating in Australia (10, 11, 13). Lineage 2 strains are
usually less pathogenic (8), although variants, including some
contemporary strains in Greece and Eastern Europe (14), period-
ically cause severe neurological disease (15). Less is known about
lineage 3, 4, or 5 viruses, as few isolates exist, although symptom-
atic human cases have been attributed to them in Austria (16),
Russia (17), and India (9).

Protection against primary WNV infection or secondary chal-
lenge is linked to the induction of protective humoral and cellular
immune responses. Most of the protective antibodies generated
against WNV bind to the structural envelope (E) protein, with a
smaller subset directed against premembrane (prM) and the non-
structural proteins (reviewed in reference 18). Multiple reports
have shown that WNV-specific T cells also contribute to protec-
tion and clearance of WNV from infected hosts (19–25). These
studies suggest that an effective WNV vaccine should stimulate
both humoral and T cell responses to achieve comprehensive pro-
tection against WNV challenge, especially in vulnerable popula-
tions. Indeed, live-attenuated replicating vaccines are immuno-
genic in animals and healthy adults and elicit robust adaptive
immune responses (26, 27). Nonetheless, a challenge to their de-
velopment and licensure is that the main target population in
humans (the elderly and immunosuppressed) may be poor can-
didates for this class of vaccine, unless extensive safety studies are
performed (28).

WNV-Innovator is a veterinary vaccine administered to horses
and exotic zoo animals (29). One potential limitation to the use of
this formalin-inactivated vaccine in humans is that it is generated
from the highly virulent North American WNV-NY strain. A vac-
cine based on a virulent WNV-NY strain necessitates the genera-
tion of high-titer virus stocks for inactivation in biosafety level 3
(BSL3) facilities, which adds to production costs, and an absolute
requirement for inactivation to prevent transmission of viable vir-
ulent virus into vulnerable vaccine recipients. An alternative to

Received 18 October 2012 Accepted 26 November 2012

Published ahead of print 5 December 2012

Address correspondence to Michael S. Diamond, diamond@borcim.wustl.edu.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.

doi:10.1128/JVI.02903-12

1926 jvi.asm.org Journal of Virology p. 1926–1936 February 2013 Volume 87 Number 4

 on D
ecem

ber 8, 2014 by W
ashington U

niversity in S
t. Louis

http://jvi.asm
.org/

D
ow

nloaded from
 

http://www.cdc.gov/ncidod/dvbid/westnile/index.htm
http://www.cdc.gov/ncidod/dvbid/westnile/index.htm
http://dx.doi.org/10.1128/JVI.02903-12
http://jvi.asm.org
http://jvi.asm.org/


using virulent WNV-NY is to develop a vaccine based on a natu-
rally attenuated strain, such as WNV-KUNV (30–32).

WNV-KUNV was first isolated in North Queensland, Austra-
lia, in 1960. Although 2.5% of the population in northern Austra-
lia is seropositive for WNV-KUNV, there has been no docu-
mented fatal human infection with this virus (33, 34), and only a
very few individuals have developed WNV fever (35). WNV-
KUNV is genetically similar to WNV-NY (�98% amino acid
identity), with virtually complete conservation of all neutralizing
antibody epitopes (11, 36). Indeed, immunization of mice with
live and infectious WNV-KUNV, which itself is avirulent in im-
munocompetent adult mice, completely protects against lethal
infection by North American WNV isolates (31). These observa-
tions suggest that WNV-KUNV may be a suitable strain for devel-
opment of a vaccine in humans against the more virulent strains
that circulate in the United States and other parts of the globe.
Herein, we describe the preclinical evaluation of a newly devel-
oped H2O2-inactivated WNV-KUNV vaccine in adult and aged
mice.

MATERIALS AND METHODS
Mice. Eight- to 10-week-old C57BL/6 and BALB/c mice were obtained
commercially (Jackson Laboratory). Eighteen-month-old C57BL/6 mice
were purchased from the National Institute on Aging breeder colony
(Harlan). HLA-A2 transgenic (HHDII) mice have been described previ-
ously (37) and were provided by T. Hansen and B. Carreno (St. Louis,
MO) with permission from F. A. Lemonnier (Paris, France). These mice
express a chimeric monochain of HLA-A*0201 (�1/�2 domains), mouse
Db (�3 domain), and linker-attached human �2-microglobulin (�2m)
and were bred in a specific-pathogen-free facility at Washington Univer-
sity. All mouse infections were performed in an A-BSL3-accredited facility
at Washington University in accordance with federal guidelines and ap-
proval of the Washington University Animal Studies Committee.

Viruses. The WNV lineage I New York isolate (WNV-NY; 3000.0259,
2000, passage 2) was described previously (38). The WNV-KUNV isolate
(CH16532) was a generous gift of R. Tesh (World Reference Center of
Emerging Viruses and Arboviruses, Galveston, TX). For live virus infec-
tions in mice with WNV-KUNV, 106 PFU was injected in 100 �l via the
intraperitoneal (i.p.) route. For live virus infection in mice with WNV-
NY, 102 PFU in 50 �l was injected subcutaneously (s.c.) via footpad in-
jection. For intracranial (i.c.) challenges, aged mice were given 104 PFU
(10,000 times the 90% lethal dose [LD90]) and young mice were admin-
istered 106 PFU (1,000,000 times the LD90) in 10 �l.

Vaccine preparation. Serum-free-adapted (VP-SFM medium; Life
Technologies) WHO-Vero cells (10-87; ATCC) were grown to confluence
in flat-stock cell culture or on Cytodex-1 microcarrier beads (GE Health-
care) in a WAVE bioreactor (GE Healthcare). Cells were infected with
WNV-KUNV strain CH16532 (multiplicity of infection, 0.1) and har-
vested approximately 48 h later. Supernatants were concentrated and ini-
tially purified by tangential flow filtration followed by diafiltration into
inactivation buffer (20 mM Tris-HCl, pH 8.0, 50 mM NaCl, 2% sorbitol).
Following sterile filtration (pore size, 0.22 �m) to remove potential ag-
gregates, WNV-KUNV was inactivated with H2O2 (Fisher Scientific)
(H2O2-WNV-KUNV) at a final concentration of 3.0% for 7 to 8 h at room
temperature, with an additional filtration step performed approximately
midway through the inactivation period (4 h). After inactivation, H2O2

was removed through further purification by dialysis, followed by pellet-
ing of the virus by ultracentrifugation (200,000 � g, 16 h) or ion-exchange
chromatography (cellufine sulfate; JNC Corporation). Mice were immu-
nized i.p. with H2O2-WNV-KUNV containing approximately 1 � 107

PFU equivalents/�g protein) that was adjuvanted with either 5 �g mono-
phosphoryl lipid A (MPL; InvivoGen) or 0.1% aluminum hydroxide gel
(alum; Sigma-Aldrich). WNV-Innovator, a formalin-inactivated crude
virus preparation (New York 1999 strain VM2, serial number 1666142A),

is available commercially (Pfizer) and contains a proprietary oil adjuvant,
MetaStim, as well as excipients. For experiments in this study with WNV-
Innovator, we used a dose of 100 �l, which is 1/10 of the dose adminis-
tered to horses.

Virus inactivation studies. To determine the kinetics of virus inacti-
vation, WNV-KUNV that was concentrated by tangential flow filtration
was treated with a final concentration of 3.0% H2O2 and monitored over
time. At specific time points, aliquots were sampled from the bulk suspen-
sion and treated with catalase (final concentration, 12.5 U/ml; 10 min at
room temperature; MP Biomedical) to remove residual H2O2. This pro-
cedure was performed twice on each sample to ensure complete removal
of H2O2. Following this, standard plaque assays were performed on Vero
cells as previously described (39). Of note, catalase treatment alone had no
impact on the infectivity of WNV-KUNV (data not shown); thus, virus
inactivation was due to exposure to 3.0% H2O2.

Gel electrophoresis. Reducing SDS-PAGE was performed with
NuPAGE 4 to 12% bis-Tris gels in MOPS (morpholinepropanesulfonic
acid) running buffer per the manufacturer’s instructions (Life Technolo-
gies). Vaccine antigen samples were diluted into NuPAGE SDS sample
buffer supplemented with a final concentration of 50 mM dithiothreitol
(DTT), heated at 80°C for 10 min, and loaded onto prepared gels. Gels
were run in an Xcell SureLock system (Life Technologies) for approxi-
mately 45 min at a constant voltage of 200 V and then stained with a Pierce
silver stain kit (Thermo Scientific). Gel electrophoresis for Western blot
analysis was carried out similarly, but DTT was omitted to maintain
nonreducing conditions. Following electrophoresis, gels were blotted
onto polyvinylidene difluoride membranes using an iBlot dry blotting
system (Life Technologies). After transfer, membranes were blocked (5%
nonfat dry milk in phosphate-buffered saline [PBS], 0.05% Tween 20
[PBS-T]) for 1 h at room temperature and probed with the WNV-specific
monoclonal antibody (MAb) 7G11 at 1 �g/ml in blocking buffer for 1 h at
room temperature. Membranes were washed five times with PBS-T and
probed with a horseradish peroxidase-conjugated goat anti-mouse IgG
secondary antibody at an optimal dilution for 1 h at room temperature.
Following a final series of washes with PBS-T, blots were developed with
the Pierce ECL Western blotting substrate (Thermo Scientific) according
to the manufacturer’s recommendations and exposed to Biomax XAR
film (Kodak).

CD8� T cell depletion experiments. CD8� T cells were depleted from
mice with a rat MAb (53-5.8; rat IgG2b; BD Bioscience) specific for the
mouse CD8� chain according to a previously published protocol (40). A
rat IgG1 antibody (Jackson ImmunoResearch) was used as an isotype
control. Anti-CD8� or isotype control MAb (40 �g) was administered to
mice via an i.p. injection 2 days prior to i.c. challenge, and an additional 10
�g of anti-CD8� or isotype control MAb was administered intravenously
(i.v.) on the day of virus challenge. Two days after infection, the efficiency
of depletion of CD8� T cells was assessed by flow cytometry after staining
peripheral blood mononuclear cells with anti-CD8� (Biolegend).

Flow cytometry. Intracellular staining for tumor necrosis factor alpha
(TNF-�) and gamma interferon (IFN-�) of lymphocytes isolated from the
spleen was performed as described previously (41). Briefly, spleens were har-
vested and homogenized to form a single-cell suspension and incubated with
2 �g/ml brefeldin A (Sigma) for 6 h at 37°C with 10�6 M of peptide NS4B
from residues 2488 to 2496, E from residues 347 to 354, E from residues 771 to
778 (20) (H-2b mouse CD8� T cells), or SVG9 E from residues 720 to 728 (42)
(HLA-A2 transgenic CD8� T cells) or 2 �g/ml anti-CD3 (145-2C11) (BD
Biosciences). After incubation, the cells were stained with directly labeled
antibodies (all from Biolegend, unless indicated) against CD3, CD4, CD11a,
CD19, CD27, CD43, CD62L, CD69, CD122, CD127, CD8�, CD44, pro-
grammed cell death protein 1 (PD-1), killer cell lectin-like receptor subfamily
G member 1 (KLRG1), and cytotoxic T lymphocyte antigen 4 (CTLA-4).
Db-NS4B tetramer and HLA-A2 SVG9 tetramer were obtained from the NIH
tetramer core facility. Cells were washed, fixed, permeabilized with FixPerm
buffer (eBioscience), and stained intracellularly for anti-IFN-�, anti-TNF-�,
(eBioscience), or anti-granzyme B (Invitrogen). Lymphocytes were processed
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on an LSRII flow cytometer (BD Bioscience) using FACSDiva (version 6.1.1)
software (BD Bioscience) and analyzed with FlowJo software (Treestar). The
total numbers of IFN-�- or TNF-�-expressing CD8� T cells was determined
by multiplying the percentage of IFN-�-positive (IFN-��) or TNF-�-posi-
tive (TNF-��) CD8� T cells by the total numbers of splenocytes.

ELISA. WNV-specific IgG levels were determined using an E-protein-
specific enzyme-linked immunosorbent assay (ELISA) as described pre-
viously (43). Briefly, individual wells of a microtiter plate were coated
overnight at 4°C with 1 �g/ml of recombinant WNV E protein. Plates
were washed and blocked with 1% bovine serum albumin (BSA) in PBS
supplemented with 0.05% Tween 20 (blocking buffer). Serum samples
from naïve, immunized, or infected mice were heat inactivated (56°C for
60 min), serially diluted in blocking buffer, and added to wells for 1 h at
room temperature. Following several washes, biotin-conjugated goat an-
ti-mouse IgG (Sigma-Aldrich) was added for 1 h at room temperature.
Plates were then washed and incubated with streptavidin-conjugated
horseradish peroxidase (2 �g/ml in blocking buffer; Vector Laboratories)
for 1 h at room temperature. After several washes, plates were developed
with tetramethylbenzidine substrate (Dako) and the reaction was stopped
with 1 N H2SO4. The optical density at 450 nm was measured, and end-
point dilutions were defined as those that were twice above the back-
ground average (BSA-coated wells).

Neutralization assay. The neutralizing activity of serum antibodies
against WNV was assessed using either a focus or a plaque reduction
neutralization assay (44). Neutralization titers of serum from BALB/c
mice were determined using a plaque reduction assay as described previ-
ously (45). For studies in aged C57BL/6 mice, 50 focus-forming units of
WNV were preincubated with serial dilutions of heat-inactivated mouse
serum at 37°C for 1 h in Dulbecco modified Eagle medium with 2% fetal
bovine serum (FBS), penicillin, and streptomycin. Virus-serum mixtures
were added in triplicate to individual wells of 96-well tissue culture plates
containing Vero cell monolayers at �90% confluence. Virus was incu-
bated with Vero cells for 1 h at 37°C, after which wells were overlaid with
1% carboxymethyl cellulose (Sigma) in minimal essential medium sup-
plemented with 4% FBS. After culture at 37°C for 24 h, cells were fixed
with 1% paraformaldehyde in PBS (10 min at room temperature) and
permeabilized with 0.1% saponin and 0.1% BSA in PBS (saponin buffer; 5
min at room temperature). Cells were stained with the humanized E16
anti-WNV MAb (46) (50 �l at 200 ng/ml in saponin buffer) for 2 h at
room temperature. Following several washes, wells were incubated with
horseradish peroxidase-conjugated anti-human IgG antibody (1:5,000 in
saponin buffer; Sigma) for 1 h at room temperature. Wells were washed
and infectious foci were visualized with TrueBlue substrate (KPL) after a
5- to 10-min incubation at room temperature. Wells were rinsed with
water and dried prior to analysis with a Biospot counter (Cellular Tech-
nology) using Immunocapture software. The percent reduction in spot
numbers in samples preincubated with serum compared to the numbers
in wells with virus preincubation with medium alone were graphed using
Prism software, and 50% effective concentration (EC50) values were cal-
culated.

Statistical analysis. For survival analysis, Kaplan-Meier curves were
analyzed by the log rank test. The statistical significance of viral burden,
antibody titers, and number of activated T cells was analyzed by the
Mann-Whitney test. All statistical analyses were performed using Prism
software (GraphPad Prism).

RESULTS
Generation of an H2O2-inactivated WNV-KUNV vaccine. Our
goal was to generate an inactivated immunogenic vaccine that
elicited protective immune responses against WNV and could be
used safely in at-risk populations. Previously, members of our
group demonstrated that an H2O2-inactivated WNV-NY could
induce effective neutralizing antibody responses in BALB/c mice
(39). Although inactivated WNV-NY might be a suitable veteri-
nary vaccine, for humans, given the possible safety concerns and

manufacturing issues associated with large-scale cultivation of a
BSL3 virus, we decided to use the attenuated WNV-KUNV strain,
as it has 98% amino acid identity to WNV-NY (10, 36). To inac-
tivate WNV-KUNV, a previously determined optimal concentra-
tion of H2O2 (3.0%, vol/vol) (39) was added to concentrated virus
for a period of 7 to 8 h. Kinetic inactivation experiments demon-
strated that under these conditions, WNV-KUNV showed a rapid
loss of infectivity, with a half-life of approximately 2.6 min (Fig.
1A). Based on these inactivation kinetics, we estimated that 7 h of
inactivation would achieve a greater than 10-log-unit reduction of
infectious virus. However, since the amount of viable virus
dropped below our limit of detection within 90 min of the inacti-
vation procedure (Fig. 1A), additional coculture assays in Vero
cells, using up to 5% of the final purified vaccine, confirmed com-
plete inactivation (data not shown). Following inactivation, the
vaccine material was purified further by ultracentrifugation and
ion-exchange chromatography. Analysis by SDS-PAGE of the fi-
nal purified, inactivated vaccine demonstrated that it contained
three bands at approximately 55, 20, and 15 kDa, which corre-
spond to the predicted molecular masses of the envelope (E), pre-
membrane, and capsid (C) proteins, respectively (Fig. 1B). The
identity of the dominant 55-kDa band was confirmed by Western
blotting with an anti-WNV E-protein-specific MAb (Fig. 1C).
Representative vaccine lots were screened for recognition by con-
formationally sensitive MAbs against WNV and indicated that the
H2O2-inactivated virus remains antigenically intact (data not
shown).

Induction of antibody responses. To assess the potential of
the H2O2-WNV-KUNV vaccine to generate a neutralizing anti-
body response, 8-week-old BALB/c mice (n 	 5 for each dose)
were immunized with a single dose of 2.5, 10, or 40 �g of vaccine
complexed with 0.1% alum. Neutralization assays were per-
formed with serum harvested from animals at days 28 and 90 after
vaccination (Fig. 2A). By day 28, H2O2-WNV-KUNV induced
neutralizing antibody responses against WNV-KUNV in a dose-
dependent manner (mean 
 standard error of the mean [SEM]
50% neutralization titers [NT50], 23,068 
 6,865 for a dose of 40
�g, 2,586 
 1,068 for 10 �g, and 251 
 27 for 2.5 �g). At 90 days
postimmunization, neutralization titers had increased at all three
doses tested (mean 
 SEM NT50 values, 103,602 
 23,825 for a
dose of 40 �g, 6,958 
 2,042 for 10 �g, and 4,506 
 1,608 for 2.5
�g). Thus, immunization with H2O2-WNV-KUNV, analogous to
H2O2-WNV-NY (39), induced high titers of neutralizing antibod-
ies against WNV in mice that were detected at least 3 months after
single-dose vaccination.

The majority of neutralizing antibodies against WNV are di-
rected against the E protein (12, 46–48) and inhibit infection by
blocking virus attachment, entry, and fusion (reviewed in refer-
ences 49 and 50). To further define the humoral response after
vaccination with H2O2-WNV-KUNV (10 �g) formulated with
alum, we assessed the kinetics of induction of anti-WNV-E-spe-
cific antibodies in 8-week-old BALB/c and C57BL/6 mice with or
without boosting. In this series, serum was collected on days 0, 14,
28, 42, 60, and 90 days postimmunization, and on day 28, half of
the mice in each group were boosted with alum-adjuvanted H2O2-
WNV-KUNV. Antibody induction was monitored using an
ELISA that detected antibodies against WNV-NY E protein (Fig.
2B). Both C57BL/6 and BALB/c mice generated robust anti-WNV
E-specific antibody responses by day 14 following a single admin-
istration of the vaccine (for C57BL/6 mice, 833 
 146 reciprocal
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dilution of serum; for BALB/c mice, 198 
 43 reciprocal dilution
of serum), and substantially increased titers were observed on days
42, 60, and 90 in the mice that were boosted (Table 1). Higher
levels (2- to 7-fold, P � 0.05) of WNV-E-specific antibodies were
observed on days 14, 42, and 90 in the C57BL/6 mice than BALB/c

mice that received a single dose of vaccine. However, no differ-
ences in the WNV E-specific antibodies were observed in the two
strains of mice after boosting (P � 0.4).

Vaccination with H2O2-WNV-NY or H2O2-WNV-KUNV
provides 100% protection against lethal WNV infection following
a peripheral route of infection (39) (data not shown). To deter-
mine the protective activity of the H2O2-WNV-KUNV vaccine in
a highly stringent i.c. challenge model, immunized BALB/c or
C57BL/6 mice were infected i.c. with 106 PFU of WNV-NY
(1,000,000 times the LD90) on day 90 after initial vaccination (Fig.
2C). As expected, all unimmunized BALB/c and C57BL/6 mice
succumbed to i.c. infection. While only one (10%) BALB/c mouse
that received a single dose of the H2O2-WNV-KUNV vaccine sur-
vived the challenge, 60% of C57BL/6 mice were protected (P 	
0.05). In comparison, BALB/c (10 of 10) and C57BL/6 (9 of 10)
mice that had been boosted on day 28 were protected against the
i.c. challenge on day 90. Thus, the H2O2-WNV-KUNV vaccine
induces sufficient immunity to protect mice from a highly lethal
direct infection of WNV in the brain, although boosting was re-
quired for the greatest protection.

Induction of CD8� T cell responses in C57BL/6 and HHDII
mice. We next determined whether CD8� T cells contributed
to the protection conferred by the H2O2-WNV-KUNV vaccine.
We speculated that this was possible with a nonreplicating vac-
cine, as a substantial fraction of the anti-WNV CD8� T cell
response associated with live virus infection requires CD8-�
dendritic cells and antigen cross-presentation (41, 51). In
C57BL/6 mice, the immunodominant CD8� T cell epitope is in
the NS4B protein (20, 52). As the H2O2-WNV-KUNV vaccine

FIG 1 Inactivation and characterization of an H2O2-WNV-KUNV vaccine.
(A) A representative purified preparation of WNV-KUNV (20 mM Tris-HCl
[pH 8.0], 50 mM NaCl, 2% sorbitol) was inactivated with 3.0% H2O2 at room
temperature (25 
 2°C) for 7 h. Aliquots of the suspension were removed at
the indicated time points and treated with catalase to neutralize residual H2O2

prior to measuring infectious virus titers by plaque assay. The calculated half-
life (T1/2) for inactivation is shown. The limit of detection (LOD) is indicated
by the dashed line. Empty symbols below the limit of detection indicate that no
viable virus was detected by plaque assay at those time points. The data shown
are representative of at least three independent experiments. (B) Following
purification, 0.1 �g of representative vaccine antigen was loaded onto a reduc-
ing SDS-polyacrylamide gel and protein bands were visualized by Coomassie
stain. Bands corresponding to the molecular sizes of E, prM, and C are de-
noted. (C) The same vaccine antigen described above was analyzed by SDS-
PAGE under nonreducing conditions and probed by Western blotting with the
anti-WNV E-protein-specific MAb 7G11. Note that the differences in molec-
ular sizes of E in panels B and C reflect the presence or absence of a reducing
agent, respectively, during SDS-PAGE. The numbers to the left of the gels in
panels B and C are molecular masses (in kilodaltons).

FIG 2 Humoral response after vaccination with H2O2-WNV-KUNV in
C57BL/6 and BALB/c mice. (A) Neutralization titers (NT50) against WNV-NY
from serum on days 28 and 90 after immunization with 40 �g, 10 �g, or 2.5 �g
of H2O2-WNV-KUNV vaccine formulated with 0.1% alum in BALB/c mice.
Data are pooled from 2 independent experiments. (B) WNV E-protein-spe-
cific ELISA comparing H2O2-WNV-KUNV vaccination in BALB/c and
C57BL/6 mice immunized with 10 �g on days 0, 14, 28, 42, 60, and 90. On day
28, half of the mice in each group were boosted with the H2O2-WNV-KUNV
vaccine (n 	 20 BALB/c mice and 20 C57BL/6 mice). (C) Ninety days after
vaccination (with or without boosting), the BALB/c and C57BL/6 mouse
groups described in panel B were challenged with 106 PFU of WNV-NY via an
i.c. route and monitored for survival. In addition, naïve BALB/c or C57BL/6
mice were challenged i.c. as controls.
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is highly purified, the nonstructural NS4B protein is absent
from the vaccine preparation. Nonetheless, there are two sub-
dominant epitopes (E347 and E771) that are encoded by the
WNV E protein and conserved in WNV-KUNV that could po-
tentially elicit a CD8� T cell response (20, 52). To assess this,
we measured the generation of the WNV-specific CD8� T cell
response against the NS4B, E347, and E771 peptides in
C57BL/6 mice following immunization with H2O2-WNV-
KUNV or infection with live WNV-NY or WNV-KUNV (Fig.
3A and B). While we detected a CD8� T cell response to the
dominant and subdominant epitopes following infection with
the live viruses, we did not identify a CD8� T cell response to
any of the epitopes following vaccination with purified H2O2-
inactivated WNV.

We speculated that a CD8� T cell response still might have
been generated by H2O2-WNV-KUNV but was below the
threshold level of detection by our flow cytometry assay. To test
this hypothesis, we evaluated the effect of CD8� T cell deple-
tion on secondary challenge following vaccination (Fig. 3C).
Groups of 16 mice were immunized with 10 �g of H2O2-WNV-
KUNV, infected with 102 PFU of live WNV-NY or 106 PFU of
live WNV-KUNV, or left unvaccinated. Twenty-eight days
later, all mice received 40 �g of a CD8�-depleting or isotype
control MAb. Two days later, the mice were administered a
second dose of depleting or isotype control MAb and concur-
rently challenged with 106 PFU of WNV-NY via a stringent i.c.
route. As expected, all naïve control mice succumbed to i.c.
infection regardless of the presence or absence of CD8� T cells.
In comparison, mice receiving live WNV (WNV-NY or WNV-
KUNV) survived the challenge independently of CD8� T cell
depletion. However, we observed a significant survival decrease
(58 versus 14% survival, P 	 0.006) in vaccinated mice receiv-
ing the CD8�-depleting MAb compared to that in mice receiv-
ing the isotype control MAb. Thus, although WNV-specific
CD8� T cells in vaccinated animals were below our limits of
detection by flow cytometry, a response was generated and pro-
tected mice against a stringent lethal virus challenge.

To confirm the potential of H2O2-WNV-KUNV for generating
a CD8� T cell response and begin to address its applicability for
humans, we repeated immunization studies in HHDII mice (37,
53). These mice are on an isogenic C57BL/6 background and ex-
press the �1 and �2 domains of HLA-A*0201 linked to the �3
domain of mouse Db with a linker-attached human �2m. These
mice are genetically deficient in mouse �2m and H2-Db and have
very low surface expression of H2-Kb. Due to the absence of
mouse �2m and mouse neonatal FcR (FcRn), HHDII mice have
much lower levels of circulating antibody and are highly suscep-
tible to WNV infection, making them less useful as a pathogenesis

or vaccine model in which humoral responses are important.
However, they are a suitable model for assessing CD8� T cell
responses against epitopes that are restricted by HLA-A*0201 and
have previously been used to demonstrate CD8� T cell responses
against WNV (53). In WNV infection of humans, the immuno-
dominant HLA-A2-restricted epitope falls within the E protein
(SVG9 [SVGGVFTSV]) (42, 53, 54) and is conserved between
members of the Flaviviridae family, including WNV-NY and
WNV-KUNV (data not shown).

To test for the development of HLA-A2-restricted WNV-specific
CD8� T cell responses, HHDII mice either were immunized with 40
�g of H2O2-WNV-KUNV or infected with 106 PFU of WNV-
KUNV. At day 10 postinfection or postvaccination, the spleens of the
HHDII mice were harvested and the CD8� T cells were characterized
functionally and phenotypically (Fig. 4A to D). Using an SVG9-spe-
cific major histocompatibility complex (MHC) class I tetramer, we
identified a WNV-specific CD8� T cell population in both vaccinated
and infected animals, although the percentage and total number of
SVG9-specific CD8� T cells was lower in vaccinated mice (5% com-
pared to 11%, P 	 0.04; 3.6 � 104 compared to 8.7 � 104 cells, P 	
0.002; Fig. 4A). SVG9-specific CD8� T cells from vaccinated mice
were also distinct phenotypically from those generated following in-
fection, as they expressed significantly higher levels of interleukin-
7R� (CD127, P 	 0.008); PD-1 (P 	 0.03), a negative regulator of
immune responses; and CD62L (P 	 0.04), a cell adhesion molecule
that regulates T cell homing (Fig. 4B).

We next characterized functionally the antigen-specific CD8�

T cells after vaccination or infection. At day 8 postinfection or
postvaccination, splenic CD8� T cells were restimulated with
SVG9 peptide and analyzed for intracellular levels of the cytokines
IFN-� and TNF-�. While CD8� T cells from both H2O2-WNV-
KUNV-vaccinated and WNV-KUNV-infected mice produced
IFN-� and TNF-�, overall, there were a higher percentage and a
higher number of SVG9-specific CD8� T cells present after live
virus infection (Fig. 4C, left four panels). Nonetheless, we ob-
served no difference in the relative proportion of antigen-specific
CD8� T cells that produced IFN-�, TNF-�, or IFN-� and TNF-�
(double-positive cells) when comparing samples from vaccinated
and infected mice, which suggests that the polyfunctionality of the
CD8� T cell response was equivalent (Fig. 4C, far right panel). To
assess their relative avidity, antigen-specific CD8� T cells from
H2O2-WNV-KUNV-vaccinated or WNV-KUNV-infected mice
were stimulated ex vivo with a dose titration of the SVG9 peptide,
and the production of IFN-� and TNF-� was analyzed (Fig. 4D).
No difference in the functional avidity of the SVG9-specific CD8�

T cells was observed after vaccination and infection.
Protection of aged C57BL/6 mice against intracranial WNV

challenge. An ideal WNV vaccine would elicit a durable and pro-

TABLE 1 Anti-WNV E-protein antibody responses after vaccinationa

Mice

Antibody titer

Day 14 Day 28 Day 42 Day 60 Day 90

BALB/c H2O2 159 
 51 1,413 
 519 3,726 
 1,1,117 4,104 
 1,516 3,444 
 1,461
BALB/c H2O2 � boost 237 
 68 404 
 151 140,356 
 37,818 53,460 
 12,036 40,500 
 10,246
C57BL/6 H2O2 972 
 193 1,844 
 588 24,318 
 7,274 11,520 
 4,061 12,816 
 4,180
C57BL/6 H2O2 � boost 660 
 220 1,492 
 523 201,082 
 43,556 73,507 
 16,078 55,282 
 14,017
a The indicated strains of mice were immunized with one dose or two doses (indicated by � boost, at 28 days) of H2O2-WNV-KUNV adjuvanted with alum. Serum was collected at
the indicated days after vaccination and analyzed for the titer of anti-E protein antibodies by ELISA. The results reflect n 	 10 mice per group.
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tective immune response in the elderly and immunocompro-
mised. However, studies with vaccines against other viruses (e.g.,
influenza virus) have revealed that with aging, the ability to induce
protective adaptive immunity wanes (reviewed in reference 55).
To begin to determine the utility of H2O2-WNV-KUNV for this
target population, we vaccinated three groups of aged (age, �18
months) mice with 10 �g of H2O2-WNV-KUNV vaccine com-
plexed with alum, 100 �l (i.e., 1/10 the equine dose) of WNV-
Innovator, or alum alone. Mice were bled on days 0, 14, 28, 42, 60,
and 90 postvaccination, and the serum IgG response against
WNV-NY E protein was measured by ELISA (Fig. 5A). On day 28,
the groups were boosted with 10 �g of H2O2-WNV-KUNV, 100
�l of WNV-Innovator, or alum, respectively. Notably, we ob-
served no difference (P � 0.8) in the anti-E-protein antibody re-
sponse between the H2O2-WNV-KUNV and WNV-Innovator
vaccines at any of the time points, whereas the responses to both

vaccines were significantly higher than the response to alum alone.
Thus, H2O2-WNV-KUNV and WNV-Innovator both induced a
robust E-protein-specific humoral response in aged C57BL/6
mice.

To assess the functional quality of the antibody response in
immunized aged mice, we assessed neutralizing activity (Fig. 5B).
By day 90, both vaccines had induced strongly neutralizing re-
sponses, although WNV-Innovator had a higher NT50 value than
H2O2-WNV-KUNV (7,850 versus 818, P � 0.002). To determine
if the immune responses generated in the aged mice were protec-
tive against i.c. challenge, these animals were infected on day 90
(age, �21 months) with 104 PFU (10,000 times the LD90) of
WNV-NY (Fig. 5C). All aged mice that had received alum alone
succumbed to the WNV-NY challenge, with a mean survival time
of 8 days. Aged mice that received WNV-Innovator were pro-
tected (P � 0.0001). In comparison, mice that received H2O2-

FIG 3 CD8� T cell response in H2O2-WNV-KUNV-vaccinated C57BL/6 mice. (A) Flow cytometry contour plots showing IFN-�� CD8� T cells after
restimulation of cells with the E771 Kb-restricted peptide. From left to right are examples from PBS-treated, H2O2-WNV-KUNV-vaccinated, WNV-NY-infected,
and WNV-KUNV-infected mice at day 8. (B) Summary of intracellular TNF-� and IFN-� intracellular staining to identify WNV-specific CD8� T cells following
vaccination with 40 �g of H2O2-WNV-KUNV vaccine adjuvanted with 5 �g of MPL or infection with WNV-NY or WNV-KUNV. Eight days after vaccination
or infection, splenocytes were harvested and stimulated with WNV-peptides E347, E771, and NS4B in the presence of brefeldin A for 6 h (n 	 10 mice in each
group in two independent experiments). (C) C57BL/6 mice were infected or vaccinated as described for panel B, and on days 28 and 32 postvaccination or
postinfection, the mice received either 40 �g of anti-CD8� or an isotype control MAb. (Left) Flow cytometry contour plots show the efficiency of the depletion
of CD8� T cells; (right) on day 32, all mice were challenged with 106 PFU of WNV-NY via the i.c. route and monitored for survival (n 	 15 mice in each group
from two independent experiment). Asterisks indicate comparisons that are statistically significantly different (**, P � 0.01; *, P � 0.05).
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FIG 4 CD8� T cell response in HHDII mice after vaccination with H2O2-WNV-KUNV. (A) Eight days following immunization with 40 �g of H2O2-
WNV-KUNV vaccine adjuvanted with 5 �g of MPL or infection with 104 PFU of WNV-KUNV, splenocytes were stained with an SVG9-specific MHC class
I tetramer (n 	 9 per group from three independent experiments). (Left) Percentage of tetramer-positive CD8� T cells; (middle) number of tetramer-
positive CD8� T cells; (right) representative examples of SVG9 tetramer staining of lymphocytes from H2O2-WNV-KUNV-vaccinated or WNV-KUNV-
infected HHDII mice. Some background staining (0.18 to 0.2%) of the SVG9 tetramer was observed in cells of the CD8-negative gate from PBS-treated,
vaccinated, or WNV-infected mice. This level corresponded to that (0.21%) seen in the CD8� T cell gate from PBS-treated animals. (B) The tetramer-
positive SVG9-specific CD8� T cells from panel A were stained with antibodies against CD127, PD1, and CD62. The filled green histograms represent
staining of naïve CD8� T cells and are shown as a negative control. The relative geometric mean fluorescence intensity (GMFI) reflects data pooled from
several independent experiments after normalization. (C) Summary of flow cytometry data showing TNF-�� CD8� T cells, IFN-�� CD8� T cells, and
IFN-�� TNF-�� CD8� T cells after restimulation of cells with the SVG9 peptide. Representative examples shown are from H2O2-WNV-KUNV-
vaccinated or WNV-KUNV-infected mice at day 8. Far right panel, summary of intracellular TNF-� and IFN-� intracellular staining to identify
WNV-specific CD8� T cells following vaccination with 40 �g of H2O2-WNV-KUNV vaccine adjuvanted with 5 �g of MPL or infection with WNV-KUNV.
Eight days after infection or vaccination, splenocytes were harvested and stimulated with SVG9 in the presence of brefeldin A for 6 h (n 	 10 mice for each
group from two independent experiments). (D) Splenocytes from vaccinated H2O2-WNV-KUNV- or WNV-KUNV-infected HHDII mice were stimu-
lated ex vivo with different doses of SVG9 peptide, and the production of IFN-� and TNF-� was analyzed (n 	 8 mice). Asterisks in this figure indicate
comparisons that are statistically significantly different (***, P � 0.001; **, P � 0.01; *, P � 0.05).
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WNV-KUNV also showed significant protection (53% survival,
P 	 0.005 compared to alum alone) from i.c. challenge. Thus,
both inactivated vaccines induced immunity in aged animals, and
the WNV-Innovator vaccine provided greater protection in the
i.c. challenge model.

DISCUSSION

The development of a WNV-specific humoral immune response
is an important criterion for the development of an effective vac-
cine. Passive transfer of serum containing WNV-specific antibod-
ies protects against virus dissemination into the central nervous
system and prevents WNV encephalitis and death (56, 57). In
humans and mice, a large component of the WNV-specific pro-
tective antibody response is directed against the viral E protein
(18, 58, 59). Here, we demonstrate the protective capacity of a
novel H2O2-WNV-KUNV vaccine against lethal WNV challenge.
Following vaccination with H2O2-WNV-KUNV in both young
and old mice, we observed a significant WNV E-protein-specific
and neutralizing antibody response that was enhanced by boost-
ing and remained elevated for the duration of the study. More-
over, using human HLA-A2 transgenic and wild-type C57BL/6
and BALB/c adult mice, we showed that the H2O2-WNV-KUNV
vaccine generates a polyfunctional antigen-specific CD8� T cell
response. Taken together, H2O2-WNV-KUNV induces adaptive
immunity to WNV that protects adult and aged mice against lethal
infection.

We compared the antibody response of H2O2-WNV-KUNV
to that of a commercially available veterinary vaccine (WNV-
Innovator), which is used in horses and exotic birds but not in
humans. The inactivated WNV-Innovator formulation is pro-
duced after formalin inactivation of WNV-NY and complexing
with MetaStim, a proprietary adjuvant (23, 29). The vaccine,
however, is not purified in a virion-only form, as in C57BL/6 mice
it induced a CD8� T cell response against the Db-restricted NS4B
peptide, which is absent from the virion (23). Although WNV-
Innovator is used effectively in horses (60), there are regulatory
barriers to using unpurified vaccines in humans. Moreover, as the
viral backbone is derived from the virulent WNV-NY 1999 strain,
this raises the safety threshold for complete virus inactivation be-
fore immunization of humans, especially those at risk for severe
disease (61). While a single administration of purified H2O2-
WNV-KUNV induced a strong WNV-specific antibody response

in C57BL/6 mice, the antibody titer was lower than that observed
with WNV-Innovator. This finding differs from that of a pre-
vious study using sucrose gradient-purified H2O2-inactivated
WNV-NY in BALB/c mice (39). These differences could be due to
mouse strain variation (BALB/c versus C57BL/6), the virus strain
used for vaccine production (WNV-NY versus WNV-KUNV), or
the relative purity of the vaccine preparation. Following boosting,
however, comparable WNV-specific E antibody titers were ob-
served with H2O2-WNV-KUNV and WNV-Innovator. Regard-
less, the H2O2-WNV-KUNV vaccine provided significant protec-
tion in young and aged mice from a stringent i.c. challenge with
WNV-NY.

CD8� T cells contribute to protection against and clearance of
primary WNV infection (20, 22, 23, 52, 62) and secondary chal-
lenge (23). We initially set out to assess whether H2O2-WNV-
KUNV could stimulate both a protective antibody and CD8� T
cell response. Due to the purity of the vaccine preparation, which
contains virions composed of prM/M, E, and C proteins and the
viral RNA, the H-2b immunodominant epitope in the NS4B pro-
tein was absent, making it difficult to detect an antigen-specific
CD8� T cell response in C57BL/6 mice. Nonetheless, depletion
studies followed by i.c. challenge revealed that the H2O2-WNV-
KUNV vaccine induced a CD8� T cell response in C57BL/6 mice.
While the vaccine response generated a robust neutralizing anti-
body response, it was not sufficient to prevent lethal infection after
direct introduction of WNV into the brain; protection required
the presence of CD8� T cells. In comparison, and as reported
previously (23), mice that received live WNV or WNV-KUNV
and survived initial infection produced higher levels of antibody
and survived rechallenge regardless of the presence of CD8� T
cells.

H2O2-WNV-KUNV also induced a robust polyfunctional
CD8� T cell response in the HLA-A2 human MHC class I trans-
genic mice, wherein the immunodominant CD8� T cell epitope
against WNV maps to the SVG9 peptide in the E protein (42) and,
thus, is present in the purified vaccine. We observed no difference
in the relative avidity of SVG9-specific CD8� T cells from mice
receiving live WNV-KUNV in comparison to those from mice
vaccinated with H2O2-WNV-KUNV. Priming of a potent cellular
immune response against a human HLA-restricted WNV epitope
suggests that H2O2-WNV-KUNV might stimulate a protective
CD8� T cell response in humans. In support of this, profiling

FIG 5 Vaccination and challenge of aged mice. (A) Aged C57BL/6 mice (age, 18 months) were vaccinated with 10 �g of H2O2-WNV-KUNV vaccine adjuvanted
with 0.1% alum (n 	 15), vaccinated with 100 �1 of WNV-Innovator (n 	 15), or administered 0.1% alum alone (n 	 15), and at 28 days after vaccination, the
mice were boosted. All groups were phlebotomized on days 0, 14, 28, 42, 60, and 90 postvaccination, and the titer of serum IgG against WNV E protein was
measured by ELISA. (B) On day 90 postimmunization, neutralization titers in serum from the mice described in panel A were measured. (C) Vaccinated mice
were challenged i.c. with 104 PFU of WNV-NY on day 90 and monitored for survival. Asterisks indicate comparisons that are statistically significantly different
(***, P � 0.001; **, P � 0.01).
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studies from WNV-infected patients have shown that multiple
CD8� T cell epitopes map to the structural proteins of WNV and
are presented by different MHC class I alleles (42, 54, 63, 64).
Future immunization studies in other HLA transgenic mice and,
ultimately, humans will be required to define the extent of anti-
gen-specific CD8� T cell responses generated after H2O2-WNV-
KUNV administration.

The elderly and immunocompromised are at the greatest risk
of developing severe neurological sequelae as a consequence of
WNV infection (65). However, age-related immune defects in
both the innate and adaptive immune response create hurdles to
the development of an effective vaccine (see reference 66 and ref-
erences therein). Similar to humans, aged mice are more suscep-
tible to severe WNV disease and, thus, a reasonable surrogate for
determining vaccine efficacy (19). Our observation that aged mice
developed strong WNV-specific humoral responses and were pro-
tected after immunization and boosting with H2O2-WNV-KUNV
is a first step in demonstrating vaccine efficacy in a highly suscep-
tible population. Further studies are needed to assess whether the
mechanism of protection in aged mice is similar in its relative
composition (antibody versus T cell mediated) to that in younger
adult mice and whether each component is durable.

Although a significant fraction of aged mice were protected 2
months after boosting with a 10-�g dose of H2O2-WNV-KUNV
formulated with alum, complete protection was generated only by
the formalin-inactivated WNV-Innovator vaccine formulated
with a strong veterinary adjuvant, MetaStim. It is unclear how
much WNV protein (soluble and intact virion protein) is in the
WNV-Innovator vaccine. It is possible that the response to a
higher, 40-�g dose of highly purified H2O2-WNV-KUNV could
meet or exceed the neutralizing antibody responses elicited by
immunization with a 1/10 horse dose of WNV-Innovator vaccine,
and this could potentially improve protection against robust i.c.
challenge. Alternatively, since the WNV-Innovator vaccine is not
purified, it may contain other uncharacterized factors, such as the
immunogenic NS4B protein (a nonstructural protein not found
in purified H2O2-WNV-KUNV), that could enhance the efficacy
and/or immunogenicity of the vaccine; indeed, robust NS4B-spe-
cific CD8� T cell responses were previously observed in C57BL/6
mice immunized with the WNV-Innovator vaccine (23). At pres-
ent, it is unclear if the protective advantage of the WNV-Innovator
vaccine observed in aged C57BL/6 mice is due to CD8� T cell
responses against WNV-specific nonstructural proteins (e.g.,
NS4B) or, possibly, antibodies against other nonstructural pro-
teins. For example, passive transfer of anti-NS1 MAbs protects
against WNV infection in mice (67), and vaccination of rhesus
macaques with NS1 protein from yellow fever virus provided
strong protective immunity against lethal virus challenge (68). To
improve the immunogenicity of H2O2-WNV-KUNV, in future
studies, we plan to optimize the dose, prime-boost sequence, ad-
juvant, and route of administration to create an inactivated vac-
cine that confers the greatest level of protection in susceptible
populations. Although in recent years it appeared as if WNV in-
fection and disease might wane, the recent epidemic outbreaks in
the United States and Europe in 2012 (1, 6, 14, 15, 69) suggest that
this trend may be changing, highlighting a need for the develop-
ment of a safe and effective WNV vaccine that can be used in
at-risk populations.
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