50 research outputs found

    Utilizing international networks for accelerating research and learning in transformational sustainability science

    Get PDF
    A promising approach for addressing sustainability problems is to recognize the unique conditions of a particular place, such as problem features and solution capabilities, and adopt and adapt solutions developed at other places around the world. Therefore, research and teaching in international networks becomes critical, as it allows for accelerating learning by sharing problem understandings, successful solutions, and important contextual considerations. This article identifies eight distinct types of research and teaching collaborations in international networks that can support such accelerated learning. The four research types are, with increasing intensity of collaboration: (1) solution adoption; (2) solution consultation; (3) joint research on different problems; and (4) joint research on similar problems. The four teaching types are, with increasing intensity of collaboration: (1) adopted course; (2) course with visiting faculty; (3) joint course with traveling faculty; and (4) joint course with traveling students. The typology is illustrated by extending existing research and teaching projects on urban sustainability in the International Network of Programs in Sustainability, with partner universities from Europe, North America, Asia, and Africa. The article concludes with challenges and strategies for extending individual projects into collaborations in international networks.Postprint (author's final draft

    Photovoltaic power plants: a multicriteria approach to investment decisions and a case study in western Spain

    Full text link
    his paper proposes a compromise programming (CP) model to help investors decide whether to construct photovoltaic power plants with government financial support. For this purpose, we simulate an agreement between the government, who pursues political prices (guaranteed prices) as low as possible, and the project sponsor who wants returns (stochastic cash flows) as high as possible. The sponsor s decision depends on the positive or negative result of this simulation, the resulting simulated price being compared to the effective guaranteed price established by the country legislation for photovoltaic energy. To undertake the simulation, the CP model articulates variables such as ranges of guaranteed prices, tech- nical characteristics of the plant, expected energy to be generated over the investment life, investment cost, cash flow probabilities, and others. To determine the CP metric, risk aver- sion is assumed. As an actual application, a case study on photovoltaic power investment in Extremadura, western Spain, is developed in detail.Garcia-Bernabeu, A.; Benito Benito, A.; Bravo Selles, M.; Pla Santamaría, D. (2015). Photovoltaic power plants: a multicriteria approach to investment decisions and a case study in western Spain. Annals of Operations Research. 1-12. doi:10.1007/s10479-015-1836-2S112Andrews, R. W., Pollard, A., & Pearce, J. M. (2012). Improved parametric empirical determination of module short circuit current for modelling and optimization of solar photovoltaic systems. Solar Energy, 86(9), 2240–2254.Anwar, Y., & Mulyadi, M. S. (2011). Income tax incentives on renewable energy industry: Case of geothermal industry in USA and Indonesia. African Journal of Business Management, 5(31), 12264–12270.Aouni, B., & Kettani, O. (2001). Goal programming model: A glorious history and a promising future. European Journal of Operational Research, 133(2), 225–231.Ballestero, E. (1997). Selecting the CP metric: A risk aversion approach. European Journal of Operational Research, 97(3), 593–596.Ballestero, E. (2000). Project finance: A multicriteria approach to arbitration. Journal of Operational Research Society, 51, 183–197.Ballestero, E. (2007). Compromise programming: A utility-based linear-quadratic composite metric from the trade-off between achievement and balanced (non-corner) solutions. European Journal of Operational Research, 182(3), 1369–1382.Ballestero, E., Pérez-Gladish, B., Arenas-Parra, M., & BilbaoTerol, A. (2009). Selecting portfolios given multiple Eurostoxx-based uncertainty scenarios: A stochastic goal programming approach from fuzzy betas. INFOR: Information Systems and Operational Research, 47(1), 59–70.Ballestero, E., & Plà-Santamaría, D. (2003). Portfolio selection on the Madrid exchange: A compromise programming model. International Transactions in Operational Research, 10(1), 33–51.Ballestero, E., & Pla-Santamaria, D. (2004). Selecting portfolios for mutual funds. Omega, 32(5), 385–394.Ballestero, E., & Pla-Santamaria, D. (2005). Grading the performance of market indicators with utility benchmarks selected from Footsie: A 2000 case study. Applied Economics, 37(18), 2147–2160.Ballestero, E., & Romero, C. (1996). Portfolio selection: A compromise programming solution. Journal of the Operational Research Society, 47, 1377–1386.Bastian-Pinto, C., Brandão, L., & de Lemos Alves, M. (2010). Valuing the switching flexibility of the ethanol–gas flex fuel car. Annals of Operations Research, 176(1), 333–348.Branker, K., Pathak, M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 4470–4482.Casares, F., Lopez-Luque, R., Posadillo, R., & Varo-Martinez, M. (2014). Mathematical approach to the characterization of daily energy balance in autonomous photovoltaic solar systems. Energy, 72, 393–404.Chatterji, A. K., Levine, D. I., & Toffel, M. W. (2009). How well do social ratings actually measure corporate social responsibility? Journal of Economics & Management Strategy, 18(1), 125–169.Copeland, T. E., & Weston, J. (1988). Financial theory and corporate policy. Reading, Massachusetts: Addison-Wesley.Gallagher, K. S. (2013). Why & how governments support renewable energy. Daedalus, 142(1), 59–77.García-Cascales, M. S., Lamata, M. T., & Sánchez-Lozano, J. M. (2012). Evaluation of photovoltaic cells in a multi-criteria decision making process. Annals of Operations Research, 199(1), 373–391.Gupta, S. (2012). Financing renewable energy. In F. L. Toth (Ed.), Energy for development (pp. 171–186). Springer.Karaarslan, A. (2012). Obtaining renewable energy from piezoelectric ceramics using Sheppard–Taylor converter. International Review of Electrical Engineering, 7(2), 3949–3956.Koellner, T., Weber, O., Fenchel, M., & Scholz, R. (2005). Principles for sustainability rating of investment funds. Business Strategy and the Environment, 14(1), 54–70.Lorenzo, E., & Navarte, L. (2000). On the usefulness of stand-alone PV sizing methods. Progress in Photovoltaics: Research and Applications, 8(4), 391–409.Lüdeke-Freund, F., & Loock, M. (2011). Debt for brands: Tracking down a bias in financing photovoltaic projects in Germany. Journal of Cleaner Production, 19(12), 1356–1364.Mavrotas, G., Diakoulaki, D., & Capros, P. (2003). Combined MCDA-IP approach for project selection in the electricity market. Annals of Operations Research, 120(1–4), 159–170.Mendez-Rodriguez, P., Garcia Bernabeu, A., Hilario, A., & Perez-Gladish, B. (2013). Some effects on the efficient frontier of the investment strategy: A preliminary approach. Recta, 14, 131–144.Michelson, G., Wailes, N., Van Der Laan, S., & Frost, G. (2004). Ethical investment processes and outcomes. Journal of Business Ethics, 52(1), 1–10.Mills, S. J. (1994). Project finance for renewable energy. Renewable energy, 5(1–4), 700–708.ORourke, A. (2003). The message and methods of ethical investment. Journal of Cleaner Production, 11(6), 683–693.Pla-Santamaria, D., & Bravo, M. (2013). Portfolio optimization based on downside risk: A mean-semivariance efficient frontier from Dow Jones blue chips. Annals of Operations Research, 205(1), 189–201.Richter, N. (2009). Renewable project finance options: ITC, PTC, or cash grant? Power, 153(5), 90–92.Schrader, U. (2006). Ignorant advice-customer advisory service for ethical investment funds. Business Strategy and the Environment, 15(3), 200–214.Sitarz, S. (2013). Compromise programming with tehebycheff norm for discrete stochastic orders. Annals of Operations Research, 211(1), 433–446.van de Kaa, G., Rezaei, J., Kamp, L., & de Winter, A. (2014). Photovoltaic technology selection: A fuzzy MCDM approach. Renewable and Sustainable Energy Reviews, 32, 662–670.Yaqub, M., Shahram Sarkni, P., & Mazzuchi, T. (2012). Feasibility analysis of solar photovoltaic commercial power generation in California. Engineering Management Journal, 24(4), 36–49.Yazdani-Chamzini, A., Fouladgar, M. M., Zavadskas, E. K., & Moini, S. H. H. (2013). Selecting the optimal renewable energy using multi criteria decision making. Journal of Business Economics and Management, 14(5), 957–978.Yu, P. (1985). Multiple criteria decision making: Concepts, techniques and extensions. New York: Springer.Zeleny, M. (1982). Multiple criteria decision making (Vol. 25). New York: McGraw-Hill.Zhao, R., Shi, G., Chen, H., Ren, A., & Finlow, D. (2011). Present status and prospects of photovoltaic market in China. Energy Policy, 39(4), 2204–2207

    In Vivo Assessment of Cold Adaptation in Insect Larvae by Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

    Get PDF
    Background Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. Methodology Given that non-destructive techniques like 1H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems–the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. Results In vivo MR images were acquired from autumn-collected larvae at temperatures between 0°C and about -70°C and at spatial resolutions down to 27 µm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. Conclusions These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo

    Syndromes of global change

    No full text
    A novel transdisciplinary description of the mega-process called "Global Change" in terms of functional patterns ("Syndromes") is presented. This approach to environmental analysis is inspired by medical sciences, where syndromes are perceived as typical combinations of pertinent co-factors. Sixteen main syndromes are identi ed as the subdynamics generating the world-wide environment and development process with all its negative aspects and impacts. The analysis relies on a specific semi-qualitative methodology, which brings together elements from complex systems theory, fuzzy logic and expert-judgment evaluations. The concept is illustrated by in-depth treatment and comparison of the syndromes Sahel" and "Green Revolution". As a corollary of the syndrome approach, a simple operational de nition o

    Climate vulnerability mapping: A systematic review and future prospects

    No full text
    Maps synthesizing climate, biophysical and socioeconomic data have become part of the standard tool-kit for communicating the risks of climate change to society. Vulnerability maps are used to direct attention to geographic areas where impacts on society are expected to be greatest and that may therefore require adaptation interventions. Under the Green Climate Fund and other bilateral climate adaptation funding mechanisms, donors are investing billions of dollars of adaptation funds, often with guidance from modelling results, visualized and communicated through maps and spatial decision support tools. This paper presents the results of a systematic review of 84 studies that map social vulnerability to climate impacts. These assessments are compiled by interdisciplinary teams of researchers, span many regions, range in scale from local to global, and vary in terms of frameworks, data, methods, and thematic foci. The goal is to identify common approaches to mapping, evaluate their strengths and limitations, and offer recommendations and future directions for the field. The systematic review finds some convergence around common frameworks developed by the Intergovernmental Panel on Climate Change, frequent use of linear index aggregation, and common approaches to the selection and use of climate and socioeconomic data. Further, it identifies limitations such as a lack of future climate and socioeconomic projections in many studies, insufficient characterization of uncertainty, challenges in map validation, and insufficient engagement with policy audiences for those studies that purport to be policy relevant. Finally, it provides recommendations for addressing the identified shortcomings
    corecore