424 research outputs found

    Systemic inflammatory mediators in post-traumatic Complex Regional Pain Syndrome (CRPS I) - longitudinal investigations and differences to control groups

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>The Complex Regional Pain Syndrome I (CRPS I) is a disease that might affect an extremity after trauma or operation. The pathogenesis remains yet unclear. It has clinical signs of severe local inflammation as a result of an exaggerated inflammatory response but neurogenic dysregulation also contributes to it. Some studies investigated the role inflammatory mediators and cytokines; however, few longitudinal studies exist and control groups except healthy controls were not investigated yet.</p> <p>Methods</p> <p>To get further insights into the role of systemic inflammatory mediators in CRPS I, we investigated a variety of pro-, anti-, or neuro-inflammatory mediators such as C-Reactive Protein (CRP), White Blood Cell Count (WBC), Interleukins 4, 6, 8, 10, 11, 12 (p70), Interferon gamma, Tumor-Necrosis-Factor alpha (TNF-α) and its soluble Receptors I/II, soluble Selectins (E, L, P), Substance-P (SP), and Calcitonin Gene-Related Peptide (CGRP) at different time points in venous blood from patients with acute (AC) and chronic (CC) CRPS I, patients with forearm fractures (FR), with neuralgia (NE), and from healthy volunteers (C).</p> <p>Results</p> <p>No significant changes for serum parameters investigated in CRPS compared to control groups were found except for CC/C (CGRP p = 0.007), FR/C (CGRP p = 0.048) and AC/CC (IL-12 p = 0.02; TNFRI/II p = 0.01; SP p = 0.049). High interindividual variations were observed. No intra-or interindividual correlation of parameters with clinical course (e.g. chronification) or outcome was detectable.</p> <p>Conclusion</p> <p>Although clinically appearing as inflammation in acute stages, local rather than systemic inflammatory responses seem to be relevant in CRPS. Variable results from different studies might be explained by unpredictable intermittent release of mediators from local inflammatory processes into the blood combined with high interindividual variabilities. A clinically relevant difference to various control groups was not notable in this pilot study. Determination of systemic inflammatory parameters is not yet helpful in diagnostic and follow-up of CRPS I</p

    Enhanced ionization in small rare gas clusters

    Get PDF
    A detailed theoretical investigation of rare gas atom clusters under intense short laser pulses reveals that the mechanism of energy absorption is akin to {\it enhanced ionization} first discovered for diatomic molecules. The phenomenon is robust under changes of the atomic element (neon, argon, krypton, xenon), the number of atoms in the cluster (16 to 30 atoms have been studied) and the fluency of the laser pulse. In contrast to molecules it does not dissappear for circular polarization. We develop an analytical model relating the pulse length for maximum ionization to characteristic parameters of the cluster

    Formalism for Multiphoton Plasmon Excitation in Jellium Clusters

    Full text link
    We present a new formalism for the description of multiphoton plasmon excitation processes in jellium clusters. By using our method, we demonstrate that, in addition to dipole plasmon excitations, the multipole plasmons (quadrupole, octupole, etc) can be excited in a cluster by multiphoton absorption processes, which results in a significant difference between plasmon resonance profiles in the cross sections for multiphoton as compared to single-photon absorption. We calculate the cross sections for multiphoton absorption and analyse the balance between the surface and volume plasmon contributions to multipole plasmons.Comment: 29 pages, 1 figur

    Basic concepts for convection parameterization in weather forecast and climate models: COST Action ES0905 final report

    Get PDF
    The research network “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” was organized with European funding (COST Action ES0905) for the period of 2010–2014. Its extensive brainstorming suggests how the subgrid-scale parameterization problem in atmospheric modeling, especially for convection, can be examined and developed from the point of view of a robust theoretical basis. Our main cautions are current emphasis on massive observational data analyses and process studies. The closure and the entrainment–detrainment problems are identified as the two highest priorities for convection parameterization under the mass–flux formulation. The need for a drastic change of the current European research culture as concerns policies and funding in order not to further deplete the visions of the European researchers focusing on those basic issues is emphasized

    A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

    Get PDF
    PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin with disrupted barrier (e.g., wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the data obtained on the effects of this well-defined type of silver nanoparticles on various biological systems clearly demonstrate that cell-type specific properties as well as experimental conditions determine the biocompatibility of and the cellular responses to an exposure with silver nanoparticles

    Environmental Acidification Drives S. pyogenes Pilus Expression and Microcolony Formation on Epithelial Cells in a FCT-Dependent Manner

    Get PDF
    Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen responsible for a diverse variety of diseases, including pharyngitis, skin infections, invasive necrotizing fasciitis and autoimmune sequelae. We have recently shown that GAS cell adhesion and biofilm formation is associated with the presence of pili on the surface of these bacteria. GAS pilus proteins are encoded in the FCT (Fibronectin- Collagen-T antigen) genomic region, of which nine different variants have been identified so far. In the present study we undertook a global analysis of GAS isolates representing the majority of FCT-variants to investigate the effect of environmental growth conditions on their capacity to form multicellular communities. For FCT-types 2, 3, 5 and 6 and a subset of FCT-4 strains, we observed that acidification resulting from fermentative sugar metabolism leads to an increased ability of the bacteria to form biofilm on abiotic surfaces and microcolonies on epithelial cells. The higher biofilm forming capacity at low environmental pH was directly associated with an enhanced expression of the genes encoding the pilus components and of their transcription regulators. The data indicate that environmental pH affects the expression of most pilus types and thereby the formation of multicellular cell-adhering communities that assist the initial steps of GAS infection
    corecore