88 research outputs found

    Supporting Spatial Management of Data-Poor, Small-Scale Fisheries With a Bayesian Approach

    Get PDF
    Marine conservation areas are an important tool for the sustainable management of multispecies, small-scale fisheries. Effective spatial management requires a proper understanding of the spatial distribution of target species and the identification of its environmental drivers. Small-scale fisheries, however, often face scarcity and low-quality of data. In these situations, approaches for the prioritization of conservation areas need to deal with scattered, biased, and short-term information and ideally should quantify data- and model-specific uncertainties for a better understanding of the risks related to management interventions. We used a Bayesian hierarchical species distribution modeling approach on annual landing data of the heavily exploited, small-scale, and data-poor fishery of Chwaka Bay (Zanzibar) in the Western Indian Ocean to understand the distribution of the key target species and identify potential areas for conservation. Few commonalities were found in the set of important habitat and environmental drivers among species, but temperature, depth, and seagrass cover affected the spatial distribution of three of the six analyzed species. A comparison of our results with information from ecological studies suggests that our approach predicts the distribution of the analyzed species reasonably well. Furthermore, the two main common areas of high relative abundance identified in our study have been previously suggested by the local fisher as important areas for spatial conservation. By using short-term, catch per unit of effort data in a Bayesian hierarchical framework, we quantify the associated uncertainties while accounting for spatial dependencies. More importantly, the use of accessible and interpretable tools, such as the here created spatial maps, can frame a better understanding of spatio-temporal management for local fishers. Our approach, thus, supports the operability of spatial management in small-scale fisheries suffering from a general lack of long-term fisheries information and fisheries independent data.En prens

    Social, economic and trade characteristics of the elasmobranch fishery on Unguja Island, Zanzibar, East Africa

    Get PDF
    Understanding the socio-economic drivers underpinning fishers' decisions to target elasmobranchs is considered vital in determining sustainable management objectives for these species, yet limited empirical data is collected. This study presents an overview of elasmobranch catch, trade and socio-economic characteristics of Zanzibar's small-scale, artisanal fishery. The value of applying this information to future elasmobranch fisheries policy is demonstrated. In August 2015, interviews were conducted with fishers (n = 39) and merchants (n = 16) at two landing sites, Kizimkazi-Dimbani and Mkokotoni, along with the main market site in Stone Town. Additionally, elasmobranch catches were recorded across the same locations between June and August 2015. Elasmobranchs were listed as target species by 49% of fishers interviewed. Whilst most fishers (n = 30) stated that 76–100% of their household income came from fishing, there was variation in how elasmobranch catch and trade contributed. One-third of fishers (n = 36) that caught and sold elasmobranchs reported that 41–60% of their income came from elasmobranch catch. However, for some fishers (n = 8) elasmobranch catch represented 0–20% of their income, whilst for others (n = 4) it represented 81–100%. Differences in fisheries income and elasmobranch price could be attributed to several interacting factors including season, weather, fishing effort, fishing gear, target catch and consumer demand. Further, elasmobranch price was influenced by size and species. The study revealed information on catch, trade, markets and socio-economy that is important for future research, conservation and management of elasmobranchs and fisheries in Zanzibar. The methods utilised have potential for broader application to understudied, artisanal elasmobranch fisheries in the western Indian Ocean

    Improving bycatch mitigation measures for marine megafauna in Zanzibar, Tanzania

    Get PDF
    This study was conducted to explore the governance processes and socio-economic factors relevant to the potential implementation of bycatch mitigation for various vulnerable marine megafauna (rays, sharks, marine mammals and turtles) in Zanzibar, Tanzania. Questionnaire-based interviews were conducted between February and April 2017 with fishers (n= 240) at eight landing sites. One focus group discussion was held in each site and eleven key informant interviews were carried out. The study showed that current measures to manage bycatch rates are not explicit; no rules govern rays and sharks bycatch; and rules regarding marine mammal and sea turtle bycatch are poorly enforced. Binary logistic regression was used to determine the effect of five selected socio-economic factors (education, age, proportional fishing income, fishing experience, and the number of adults who bring income into the household) on the willingness of fishers to participate in potential future bycatch mitigation measures for marine megafauna. The results indicate that only one factor (the number of adults who bring income into the household) had any significant effect (p=0.016). These findings could benefit the future governance and management of marine megafauna in Zanzibar through a better understanding of what mitigation measures are more likely to be supported

    Community based aquaculture in the western Indian Ocean: Challenges and opportunities for developing sustainable coastal livelihoods

    Get PDF
    The small-fisheries social-ecological system in the western Indian Ocean (WIO) represents a typical social-ecological trap setting where very poor natural resources dependent coastal communities face local and global threats and engage in unsustainable practices of exploiting limited resources. Community-based aquaculture (CBA) has been implemented as an important alternative or supplementary income generating activity for minimizing the overdependence on marine natural resources and promoting biodiversity conservation. Despite its proliferation throughout the WIO region in recent decades, little is known about the degree to which CBA activities have contributed to achieving the objectives of breaking the cycle of poverty and environmental degradation and promoting community development and biodiversity conservation. In order to improve understanding of common challenges and to generate recommendations for best practice, we assessed the most common CBA activities practiced in the region through literature review and workshop discussion involving practitioners and key stakeholders. Findings indicated that despite favorable environmental conditions for various CBA practices, the sector remains underdeveloped, with few activities delivering the intended benefits for coastal livelihoods or conservation. Constraints included a shortage of seed and feed supplies, low investment, limited technical capacity and skills, insufficient political support, and lack of a clear strategy for aquaculture development. These are compounded by a lack of engagement of local stakeholders, with decision making often dominated by donors, development agencies, and private sector partners. Many of the region’s CBA projects are designed along unrealistically short time frames, driven by donors rather than entrepreneurs, and so are unable to achieve financial sustainability, which limits the opportunity for capacity building and longer-term development. There is little or no monitoring on ecological and socioeconomic impacts. Except for a few isolated cases, links between CBA and marine conservation outcomes have rarely been demonstrated. Realizing the potential of CBA in contributing toward food security in the WIO will necessitate concerted investment and capacity strengthening to overcome these systemic challenges in the sector. Lessons herein offer managers, scientists, and policy advisors guidance on addressing the challenges faced in building strategic development initiatives around aquaculture in developing countries

    Marine megafauna catch in southwestern Indian Ocean small-scale fisheries from landings data

    Get PDF
    The measurable impacts of small-scale fisheries on coastal marine ecosystems and vulnerable megafauna species (elasmobranchs, marine mammals and sea turtles) within them are largely unknown, particularly in developing countries. This study assesses megafauna catch and composition in handline, longline, bottom-set and drift gillnet fisheries of the southwestern Indian Ocean. Observers monitored 21 landing sites across Kenya, Zanzibar and northern Madagascar for 12 months in 2016–17. Landings (n = 4666) identified 59 species, including three sea turtles, two small cetaceans and one sirenian (Dugong dugon). Primary gear threats to investigated taxa were identified as bottom-set gillnets (marine mammals, sea turtles and batoids), drift gillnets (marine mammals, batoids and sharks) and longlines (sharks). Overall, catch was dominated by small and moderately sized coastal requiem sharks (Carcharhiniformes) and whiprays (Dasyatidae). Larger coastal and oceanic elasmobranchs were also recorded in substantial numbers as were a number of deeper-water species. The diversity of catch demonstrates the potential for small-scale fisheries to have impacts across a number of ecosystems. From the observed catch rates we calculated annual regional elasmobranch landings to be 35,445 (95%CI 30,478–40,412) tonnes, 72.6% more than officially reported in 2016 and 129.2% more than the 10-year average (2006–16), constituting 2.48 (95%CI 2.20–2.66) million individuals. Productivity-Susceptibility Analyses indicate that small and moderately sized elasmobranchs are most vulnerable in the small-scale fisheries. The study demonstrates substantial underreporting of catches in small-scale fisheries and highlights the need to expand efforts globally to assess the extent and impact of small-scale fisheries on vulnerable marine species and their respective ecosystems

    Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes

    Get PDF
    Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo onto-genetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its con-sequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration

    Thresholds in seascape connectivity: the spatial arrangement of nursery habitats structure fish communities on nearby reefs

    Get PDF
    Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo ontogenetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its consequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration

    Comparison of local knowledge and researcher-led observations for wildlife exploitation assessment and management

    Get PDF
    The use of local knowledge observations to generate empirical wildlife resource exploitation data in data-poor, capacity-limited settings is increasing. Yet, there are few studies quantitatively examining their relationship with those made by researchers or natural resource managers. We present a case study comparing intra-annual patterns in effort and mobulid ray catches, derived from local knowledge and fisheries landings data at identical spatio-temporal scales in Zanzibar (Tanzania). The Bland-Altman approach to method comparison was used to quantify agreement, bias and precision between methods. Observations from the local knowledge of fishers and those led by researchers showed significant evidence of agreement, demonstrating the potential for local knowledge to act as a proxy for, or complement, researcher-led methods in assessing intra-annual patterns of wildlife resource exploitation. However, there was evidence of bias and low precision between methods, undermining any assumptions of equivalency. Our results underline the importance of considering bias and precision between methods, as opposed to simply assessing agreement, as is commonplace in the literature. This case-study demonstrates the value of rigorous method-comparison in informing appropriate use of outputs from different knowledge sources, thus facilitating the sustainable management of wildlife resources and the livelihoods of those reliant upon them

    Marine megafauna interactions with small-scale fisheries in the southwestern Indian Ocean: a review of status and challenges for research and management

    Get PDF
    In developing regions, coastal communities are particularly dependent on small-scale fisheries for food security and income. However, information on the scale and impacts of small-scale fisheries on coastal marine ecosystems are frequently lacking. Large marine vertebrates (marine mammals, sea turtles and chondrichthyans) are often among the first species to experience declines due to fisheries. This paper reviews the interactions between small-scale fisheries and vulnerable marine megafauna in the southwestern Indian Ocean. We highlight an urgent need for proper documentation, monitoring and assessment at the regional level of small-scale fisheries and the megafauna affected by them to inform evidence-based fisheries management. Catch and landings data are generally of poor quality and resolution with compositional data, where available, mostly anecdotal or heavily biased towards easily identifiable species. There is also limited understanding of fisheries effort, most of which relies on metrics unsuitable for proper assessment. Management strategies (where they exist) are often created without strong evidence bases or understanding of the reliance of fishers on resources. Consequently, it is not possible to effectively assess the current status and ensure the sustainability of these species groups; with indications of overexploitation in several areas. To address these issues, a regionally collaborative approach between government and non-governmental organisations, independent researchers and institutions, and small-scale fisheries stakeholders is required. In combination with good governance practices, appropriate and effective, evidence-based management can be formulated to sustain these resources, the marine ecosystems they are intrinsically linked to and the livelihoods of coastal communities that are tied to them

    Life-history, exploitation and extinction risk of the data-poor Baraka's whipray (Maculabatis ambigua) in small-scale tropical fisheries

    Get PDF
    The Baraka's whipray (Maculabatis ambigua ) is a major constituent of small‐scale fisheries catch in the southwestern Indian Ocean. Despite this, little is known of its life‐history or exploitation status. We provide the first estimates of crucial life‐history parameters and maximum intrinsic population growth rate r max , using specimens collected from small‐scale fisheries landings in Kenya, Zanzibar, and Madagascar (with northern Madagascar representing a range extension for this species). We then assess relative risk of overexploitation by combining r max with estimates of total Z , fishing F and natural M mortality, and an estimate of the exploitation ratio E . The data indicate that Baraka's whipray is a medium‐sized, fast‐growing, early maturing species, with a relatively long lifespan. This results in a high r max relative to many other elasmobranchs which when combined with estimates of F suggest that the species is not at imminent risk of extinction. Yet, estimates of exploitation ratio E suggest likely overfishing for the species, with full recruitment to the fishery being post‐maturation and exploitation occurring across a broad range of age and size classes. Thus, Baraka's whipray is unlikely to be biologically sustainable in the face of current fisheries pressures. This paper makes an important contribution to filling the gap in available data and is a step towards developing evidence‐based fisheries management for this species. Further, it demonstrates a simple and widely applicable framework for assessment of data‐poor elasmobranch exploitation status and extinction risk
    corecore