111 research outputs found

    LAser Shock Adhesion Test (LASAT), an innovation dedicated to industry

    No full text
    NonWOSAvailable online for free at http://www.ila.org.in/kiran/kiran_19_2.pdfInternational audienc

    Laser Shock Adhesion Test (LASAT) of electron beam physical vapor deposited thermal barrier coatings (EB-PVD TBCs)

    Get PDF
    International audienceDamage prediction, adhesion strength and remaining lifetime of TBC are highly important data for understanding and preventing TBC spallation on blades. LAser Shock Adhesion Test (LASAT) is a powerful method to measure adhesion of coating due to its rapidity, simplicity and capabilities to distinguish different strength levels and the easy damage observation in case of TBCs. A new protocol of LASAT has been introduced in order to measure the adhesion level of the ceramic coating from the exploitation of the two-dimensional effects that promotes a shock wave pressure-dependent size of the damage. Finite element modeling, taking into account the TBCs dimensions, showed the edges effect on interfacial stress applied by laser shock

    Traitements de surface par laser de puissance :

    No full text

    Déformation à l'échelle cristallographique d'alliages à base de nickel mono- et polycristallins par choc laser en mode confiné

    No full text
    The so-called “laser peening” treatment based on laser shock processing has been developed to improve mechanical properties due to work-hardening and formation of residual stresses. When applied to aeronautical Ni-based superalloys, an increase of fatigue resistance is expected. This article deals with deformation resulting from laser shock. The study is centered on the observation of superficial micro-roughness in the impacted zone. Micro-roughness is discussed as resulting from crystallographic changes due to shock process. Various slip phenomena were in particular determined. More generally, superficial heterogeneities in the different parts of the shocked area are discussed in the light of results on release wave propagation and formation of residual stresses. Two Ni-based superalloys, i.e. AM1 single crystal and polycrystalline Inconel 718, were used.Le traitement de “grenaillage photonique” par choc laser vise à écrouir un matériau et à y introduire des contraintes résiduelles de compression en vue d'améliorer ses propriétés mécaniques. Dans le cas de superalliages aéronautiques à base de nickel, on attend une augmentation de la tenue en fatigue. On traite ici de la déformation induite par le choc grâce à une étude microstructurale fondée sur l'observation des microreliefs de surface dans la zone traitée. Ceux-ci sont interprétés comme le résultat de l'évolution cristallographique du matériau soumis au choc. Les phénomènes de glissement, sont, en particulier, précisément identifiés. Plus généralement, les hétérogénéités de surface dans les différentes parties de l'impact sont expliquées à la lumière de résultats sur la propagation des ondes de détente de surface et sur la création de contraintes résiduelles. Deux superalliages à base de nickel, l'AM1 monocristallin et l'Inconel 718 polycristallin, ont été étudiés

    Determination of laser shock treatment conditions for fatigue testing of Ni-based superalloys

    No full text
    It is envisaged that laser shock surface treatment may be used to surface harden and improve the mechanical properties of materials by inducing compressive stresses. This study deals with its application to the high performance aeronautical Ni-based superalloy Astroloy for turbine discs and its effect on low-cycle fatigue resistance. X-ray diffraction was used to measure the surface and in-depth stress distributions. The prominent features of laser shock processing have been studied by an analytical approach to the main physical phenomena occurring successively during the impact. This led to an adequate treatment of conventionnal cylindrical low-cycle fatigue specimens. Fatigue tests were then conducted on Astroloy at 550°C. These showed the beneficial effect of laser shock processing
    corecore