683 research outputs found
A consistent interface element formulation for geometrical and material nonlinearities
Decohesion undergoing large displacements takes place in a wide range of
applications. In these problems, interface element formulations for large
displacements should be used to accurately deal with coupled material and
geometrical nonlinearities. The present work proposes a consistent derivation
of a new interface element for large deformation analyses. The resulting
compact derivation leads to a operational formulation that enables the
accommodation of any order of kinematic interpolation and constitutive behavior
of the interface. The derived interface element has been implemented into the
finite element codes FEAP and ABAQUS by means of user-defined routines. The
interplay between geometrical and material nonlinearities is investigated by
considering two different constitutive models for the interface (tension
cut-off and polynomial cohesive zone models) and small or finite deformation
for the continuum. Numerical examples are proposed to assess the mesh
independency of the new interface element and to demonstrate the robustness of
the formulation. A comparison with experimental results for peeling confirms
the predictive capabilities of the formulation.Comment: 14 pages, 11 figure
Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach
ArtĂculo Open Access en el sitio web del editor. Pago por publicar en abierto. This work presents a novel computational framework to simulate fracture events in brittle anisotropic polycrystalline materials at the microscopical level, with application to solar-grade polycrystalline Silicon. Quasi-static failure is modeled by combining the phase field approach of brittle fracture (for transgranular fracture) with the cohesive zone model for the grain boundaries (for intergranular fracture) through the generalization of the recent FE-based technique published in [M. Paggi, J. Reinoso, Comput. Methods Appl. Mech. Engrg., 31 (2017) 145–172] to deal with anisotropic polycrystalline microstructures. The proposed model, which accounts for any anisotropic constitutive tensor for the grains depending on their preferential orientation, as well as an orientation-dependent fracture toughness, allows to simulate intergranular and transgranular crack growths in an efficient manner, with or without initial defects. One of the advantages of the current variational method is the fact that complex crack patterns in such materials are triggered without any user-intervention, being possible to account for the competition between both dissipative phenomena. In addition, further aspects with regard to the model parameters identification are discussed in reference to solar cells images obtained from transmitted light source. A series of representative numerical simulations is carried out to highlight the interplay between the different types of fracture occurring in solar-grade polycrystalline Silicon, and to assess the role of anisotropy on the crack path and on the apparent tensile strength of the material. UniĂłn Europea FP/2007–2013/ERC 306622 Ministerio de EconomĂa y Competitividad MAT2015–71036-P y MAT2015–71309-P Junta de AndalucĂa P11-TEP-7093 y P12-TEP- 105
Temporal characterization of the requests to Wikipedia
This paper presents an empirical study about the temporal patterns
characterizing the requests submitted by users to Wikipedia.
The study is based on the analysis of the log lines registered by the
Wikimedia Foundation Squid servers after having sent the appropriate
content in response to users' requests. The
analysis has been conducted regarding the ten most visited editions of
Wikipedia and has involved more than 14,000 million log lines
corresponding to the traffic of the entire year 2009. The conducted methodology
has mainly consisted in the parsing and filtering
of users' requests according to the study directives. As a result, relevant information
fields have been finally stored in a database for persistence and further
characterization. In this way, we, first, assessed, whether the traffic to Wikipedia could serve
as a reliable estimator of the overall traffic to all the Wikimedia Foundation
projects. Our subsequent analysis of the temporal evolutions corresponding to
the different types of requests to Wikipedia revealed interesting differences
and similarities among them that can be related to the users' attention to the Encyclopedia.
In addition, we have performed separated characterizations of each Wikipedia edition
to compare their respective evolutions over time
A quantitative examination of the impact of featured articles in Wikipedia
This paper presents a quantitative examination of the impact of the presentation of featured articles as quality content in the main page of several Wikipedia editions. Moreover, the paper also presents the analysis performed to determine the number of visits received by the articles promoted to the featured status. We have analyzed the visits not only in the month when articles awarded the promotion or were included in the main page, but also in the previous and following ones. The main aim for this is to assess the attention attracted by the featured content and the different dynamics exhibited by each community of users in respect to the promotion process. The main results of this paper are twofold: it shows how to extract relevant information related to the use of Wikipedia, which is an emerging research topic, and it analyzes whether the featured articles mechanism achieve to attract more attention
A phase field approach for damage propagation in periodic microstructured materials
In the present work, the evolution of damage in periodic composite materials is investigated through a novel finite element-based multiscale computational approach. The proposed methodology is developed by means of the original combination of asymptotic homogenization with the phase field approach to nonlocal damage. This last is applied at the macroscale level on the equivalent homogeneous continuum, whose constitutive properties are obtained in closed form via a two-scale asymptotic homogenization scheme. The formulation considers different assumptions on the evolution of damage at the microscale (e.g., damage in the matrix and not in the inclusion/fiber), as well as the role played by the microstructural reinforcement, i.e. its volumetric content and shape. Numerical results show that the proposed formulation leads to an apparent tensile strength and a post-peak branch of unnotched and notched specimens dependent not only on the internal length scale of the phase field approach, as for homogeneous materials, but also on microstructural features. Down-scaling relations provide the full reconstruction of the microscopic fields at any point of the macroscopic model, as a simple post-processing operation
- …