6,736 research outputs found

    A global magnetic anomaly map

    Get PDF
    A subset of POGO satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Using a thirteenth order field model, fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus 50 deg. These residuals averaged over one degree latitude-longitude blocks represent a detailed global magnetic anomaly map derived solely from satellite data. Preliminary analysis of the map indicates that the anomalies are real and of geological origin

    General CMB and Primordial Trispectrum Estimation

    Full text link
    We present trispectrum estimation methods which can be applied to general non-separable primordial and CMB trispectra. We present a general optimal estimator for the connected part of the trispectrum, for which we derive a quadratic term to incorporate the effects of inhomogeneous noise and masking. We describe a general algorithm for creating simulated maps with given arbitrary (and independent) power spectra, bispectra and trispectra. We propose a universal definition of the trispectrum parameter TNLT_{NL}, so that the integrated bispectrum on the observational domain can be consistently compared between theoretical models. We define a shape function for the primordial trispectrum, together with a shape correlator and a useful parametrisation for visualizing the trispectrum. We derive separable analytic CMB solutions in the large-angle limit for constant and local models. We present separable mode decompositions which can be used to describe any primordial or CMB bispectra on their respective wavenumber or multipole domains. By extracting coefficients of these separable basis functions from an observational map, we are able to present an efficient estimator for any given theoretical model with a nonseparable trispectrum. The estimator has two manifestations, comparing the theoretical and observed coefficients at either primordial or late times. These mode decomposition methods are numerically tractable with order l5l^5 operations for the CMB estimator and approximately order l6l^6 for the general primordial estimator (reducing to order l3l^3 in both cases for a special class of models). We also demonstrate how the trispectrum can be reconstructed from observational maps using these methods.Comment: 38 pages, 9 figures. In v2 Figures 4-7 are altered slightly and some extra references are included in the bibliography. v3 matches version submitted to journal. Includes discussion of special case

    Universal Non-Gaussian Initial Conditions for N-body Simulations

    Full text link
    In this paper we present the implementation of an efficient formalism for the generation of arbitrary non-Gaussian initial conditions for use in N-body simulations. The methodology involves the use of a separable modal approach for decomposing a primordial bispectrum or trispectrum. This approach allows for the far more efficient generation of the non-Gaussian initial conditions already described in the literature, as well as the generation for the first time of non-separable bispectra and the special class of diagonal-free trispectra. The modal approach also allows for the reconstruction of the spectra from given realisations, a fact which is exploited to provide an accurate consistency check of the simulations.Comment: 7 pages, 3 figure

    Full-body motion-based game interaction for older adults

    Get PDF
    Older adults in nursing homes often lead sedentary lifestyles, which reduces their life expectancy. Full-body motion-control games provide an opportunity for these adults to remain active and engaged; these games are not designed with age-related impairments in mind, which prevents the games from being leveraged to increase the activity levels of older adults. In this paper, we present two studies aimed at developing game design guidelines for full-body motion controls for older adults experiencing age-related changes and impairments. Our studies also demonstrate how full-body motion-control games can accommodate a variety of user abilities, have a positive effect on mood and, by extension, the emotional well-being of older adults. Based on our studies, we present seven guidelines for the design of full-body interaction in games. The guidelines are designed to foster safe physical activity among older adults, thereby increasing their quality of life. Copyright 2012 ACM

    Near-infrared reddening of extra-galactic GMCs in a face-on geometry

    Full text link
    [Abridged] We describe the near-infrared reddening signature of giant molecular clouds (GMCs) in external galaxies. In particular, we examine the E(J-H) and E(H-K) color-excesses, and the effective extinction law observed in discrete GMC regions. We also study the effect of the relative scale height of the GMC distribution to the color-excesses, and to the observed mass function of GMCs. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions, resembling a face-on geometry. The scattered light is included in the models, and near-infrared color maps are calculated from the simulated data. The effective near-infrared reddening law, i.e. the ratio E(J-H)/E(H-K), has a value close to unity in GMC regions. The ratio depends on the relative scale height of GMCs, xi, and for xi values 0.1...0.75 we find the typical ratios of 0.6...1.1. The effective extinction law turns out to be very flat in GMC regions. We find the ratios of apparent extinctions of A(H)/A(K)=1.35...1.55 and A(J)/A(H)=1.15. The effect of the scattered flux on the effective reddening law, as well as on the effective extinction law, is significant. Regarding the GMC mass function, we find no correlation between the input and observed slopes of the mass functions. Rather, the observed slope reflects the parameter ξ\xi and the dynamical range of the mass function. We estimate that only a fraction of 10...20 % of the total mass of GMCs is recovered, if the observed color-excess values are transformed to masses using the Galactic reddening law. In the case of individual clouds the fraction can vary between ~0...50 %.Comment: 8 pages, 10 figures, accepted for publication in A&A. Added missing histograms in Fig.

    Microscopic Surface Structure of Liquid Alkali Metals

    Full text link
    We report an x-ray scattering study of the microscopic structure of the surface of a liquid alkali metal. The bulk liquid structure factor of the eutectic K67Na33 alloy is characteristic of an ideal mixture, and so shares the properties of an elemental liquid alkali metal. Analysis of off-specular diffuse scattering and specular x-ray reflectivity shows that the surface roughness of the K-Na alloy follows simple capillary wave behavior with a surface structure factor indicative of surface induced layering. Comparison of thelow-angle tail of the K67Na33 surface structure factor with the one measured for liquid Ga and In previously suggests that layering is less pronounced in alkali metals. Controlled exposure of the liquid to H2 and O2 gas does not affect the surface structure, indicating that oxide and hydride are not stable at the liquid surface under these experimental conditions.Comment: 12 pages, 3 figures, published in Phys. Rev.

    Rations for dairy cows

    Get PDF
    "May, 1939""Revised April 1942""The average annual production for Missouri dairy cows, 160 pounds of butterfat, can be raised to approximately 300 pounds through proper feeding."--First paragraph.M. J. Regan and W. H. Cloninge

    Rapid Separable Analysis of Higher Order Correlators in Large Scale Structure

    Full text link
    We present an efficient separable approach to the estimation and reconstruction of the bispectrum and the trispectrum from observational (or simulated) large scale structure data. This is developed from general CMB (poly-)spectra methods which exploit the fact that the bispectrum and trispectrum in the literature can be represented by a separable mode expansion which converges rapidly (with nmax=O(30)n_\textrm{max}={\cal{O}}(30) terms). With an effective grid resolution lmaxl_\textrm{max} (number of particles/grid points N=lmax3N=l_\textrm{max}^3), we present a bispectrum estimator which requires only O(nmax×lmax3){\cal O}(n_\textrm{max} \times l_\textrm{max}^3) operations, along with a corresponding method for direct bispectrum reconstruction. This method is extended to the trispectrum revealing an estimator which requires only O(nmax4/3×lmax3){\cal O}(n_\textrm{max}^{4/3} \times l_\textrm{max}^3) operations. The complexity in calculating the trispectrum in this method is now involved in the original decomposition and orthogonalisation process which need only be performed once for each model. However, for non-diagonal trispectra these processes present little extra difficulty and may be performed in O(lmax4){\cal O}(l_\textrm{max}^4) operations. A discussion of how the methodology may be applied to the quadspectrum is also given. An efficient algorithm for the generation of arbitrary nonGaussian initial conditions for use in N-body codes using this separable approach is described. This prescription allows for the production of nonGaussian initial conditions for arbitrary bispectra and trispectra. A brief outline of the key issues involved in parameter estimation, particularly in the non-linear regime, is also given
    • …
    corecore