10,197 research outputs found

    Self-tuning and the derivation of the Fab Four

    Get PDF
    We have recently proposed a special class of scalar tensor theories known as the Fab Four. These arose from attempts to analyse the cosmological constant problem within the context of Horndeski's most general scalar tensor theory. The Fab Four together give rise to a model of self-tuning, with the relevant solutions evading Weinberg's no-go theorem by relaxing the condition of Poincare invariance in the scalar sector. The Fab Four are made up of four geometric terms in the action with each term containing a free potential function of the scalar field. In this paper we rigorously derive this model from the general model of Horndeski, proving that the Fab Four represents the only classical scalar tensor theory of this type that has any hope of tackling the cosmological constant problem. We present the full equations of motion for this theory, and give an heuristic argument to suggest that one might be able to keep radiative corrections under control. We also give the Fab Four in terms of the potentials presented in Deffayet et al's version of Horndeski.Comment: 25 pages, 1 figur

    Intermediate Range Structure in Ion-Conducting Tellurite Glasses

    Get PDF
    We present ac conductivity spectra of tellurite glasses at several temperatures. For the first time, we report oscillatory modulations at frequencies around MHz. This effect is more pronounced the lower the temperature, and washes out when approaching the glass transition temperature TgT_g. We show, by using a minimal model, how this modulation may be attributed to the fractal structure of the glass at intermediate mesoscopic length scales

    Shapes of clusters and groups of galaxies: Comparison of model predictions with observations

    Full text link
    We study the properties of the 3-dimensional and projected shapes of haloes using high resolution numerical simulations and observational data where the latter comes from the 2PIGG (Eke et al. 2004) and SDSS-DR3GC group catalogues (Merchan & Zandivarez 2005). We investigate the dependence of halo shape on characteristics such as mass and number of members. In the 3-dimensional case, we find a significant correlation between the mass and halo shape; massive systems are more prolate than small haloes. We detect a source of strong systematics in estimates of the triaxiality of a halo, which is found to be a strong function of the number of members; LCDM haloes usually characterised by triaxial shapes, slightly bent toward prolate forms, appear more oblate when taking only a small subset of the halo particles. The ellipticities of observed 2PIGG and SDSS-DR3GC groups are found to be strongly dependent on the number of group members, so that poor groups appear more elongated than rich ones. However, this is again an artifact caused by poor statistics and not an intrinsic property of the galaxy groups, nor an effect from observational biases. We interpret these results with the aid of a GALFORM mock 2PIGG catalogue. When comparing the group ellipticities in mock and real catalogues, we find an excellent agreement between the trends of shapes with number of group members. When carefully taking into account the effects of low number statistics, we find that more massive groups are consistent with more elongated shapes. Finally, our studies find no significant correlations between the shape of observed 2PIGG or SDSS-DR3GC groups with the properties of galaxy members such as colour or spectral type index.Comment: 9 pages, 10 figures, submitted to MNRA

    An X-ray view of the very faint black hole X-ray transient Swift J1357.2-0933 during its 2011 outburst

    Get PDF
    We report on the X-ray spectral (using XMM-Newton data) and timing behavior (using XMM-Newton and Rossi X-ray Timing Explorer [RXTE] data) of the very faint X-ray transient and black hole system Swift J1357.2-0933 during its 2011 outburst. The XMM-Newton X-ray spectrum of this source can be adequately fitted with a soft thermal component with a temperature of ~0.22 keV (using a disc model) and a hard, non-thermal component with a photon index of ~1.6 when using a simple power-law model. In addition, an edge at ~ 0.73 keV is needed likely due to interstellar absorption. During the first RXTE observation we find a 6 mHz quasi-periodic oscillation (QPO) which is not present during any of the later RXTE observations or during the XMM-Newton observation which was taken 3 days after the first RXTE observation. The nature of this QPO is not clear but it could be related to a similar QPO seen in the black hole system H 1743-322 and to the so-called 1 Hz QPO seen in the dipping neutron-star X-ray binaries (although this later identification is quite speculative). The observed QPO has similar frequencies as the optical dips seen previously in this source during its 2011 outburst but we cannot conclusively determine that they are due to the same underlying physical mechanism. Besides the QPO, we detect strong band-limited noise in the power-density spectra of the source (as calculated from both the RXTE and the XMM-Newton data) with characteristic frequencies and strengths very similar to other black hole X-ray transients when they are at low X-ray luminosities. We discuss the spectral and timing properties of the source in the context of the proposed very high inclination of this source. We conclude that all the phenomena seen from the source cannot, as yet, be straightforwardly explained neither by an edge-on configuration nor by any other inclination configuration of the orbit.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in MNRA

    Dark energy after GW170817, revisited

    Full text link
    We revisit the status of scalar-tensor theories with applications to dark energy in the aftermath of the gravitational wave signal GW170817 and its optical counterpart GRB170817A. At the level of the cosmological background, we identify a class of theories, previously declared unviable in this context, whose anomalous gravitational wave speed is proportional to the scalar equation of motion. As long as the scalar field is assumed not to couple directly to matter, this raises the possibility of compatibility with the gravitational wave data, for any cosmological sources, thanks to the scalar dynamics. This newly "rescued" class of theories includes examples of generalised quintic galileons from Horndeski theories. Despite the promise of this leading order result, we show that the loophole ultimately fails when we include the effect of large scale inhomogeneities.Comment: Updated with corrections to the gravitational wave propagation coming from higher order terms in the presence of large scale inhomogeneities. These close off any remaining loopholes. References adde

    Extremely Sub-wavelength Planar Magnetic Metamaterials

    Full text link
    We present highly sub-wavelength magnetic metamaterials designed for operation at radio frequencies (RFs). A dual layer design consisting of independent planar spiral elements enables experimental demonstration of a unit cell size (a) that is ~ 700 times smaller than the resonant wavelength ({\lambda}0). Simulations indicate that utilization of a conductive via to connect spiral layers permits further optimization and we achieve a unit cell that is {\lambda}0/a ~ 2000. Magnetic metamaterials are characterized by a novel time domain method which permits determination of the complex magnetic response. Numerical simulations are performed to support experimental data and we find excellent agreement. These new designs make metamaterial low frequency experimental investigations practical and suggest their use for study of magneto-inductive waves, levitation, and further enable potential RF applications.Comment: 5 pages, 4 figure
    • …
    corecore