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We present ac conductivity spectra of tellurite glasses at several temperatures. For the first time,
we report oscillatory modulations at frequencies around MHz. This effect is more pronounced the
lower the temperature, and washes out when approaching the glass transition temperature Tg. We
show, by using a minimal model, how this modulation may be attributed to the fractal structure of
the glass at intermediate mesoscopic length scales.
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Over the last 30 years, the study of the atomic struc-
ture of inorganic glasses has revealed a very rich order
both from a local point of view (individual polyhedron
coordination), as at intermediate range (the way poly-
hedra are connected among them). Of course, it keeps
long range disorder, as all of us interpret glassy materi-
als. Many experiments have exposed a quasi-periodicity
in the network, including a kind of channels of network
modifiers, in a direct relationship with ionic transport
mechanisms. However, the comprehension of the relax-
ation laws in these materials is still incomplete, and many
questions remain unanswered [1].

Conductivity spectroscopy is a widely employed tech-
nique to investigate ion dynamics at different time and
length scales [2], and considerable effort has been dedi-
cated to obtain an universal behavior bringing the spec-
tra to collapse on a single curve. A scaling law with-
out arbitrary parameters was first proposed in Ref. [3]
for single ion conducting glasses, and then slightly modi-
fied to account for glasses with a wide variation of alkali
content [4]. However, that the shape of the spectra is
not universal but depends on glass composition was later
shown in Ref. [5].

For one given compound, a simple scaling law can be
obtained on the basis of the time-temperature superpo-
sition principle (TTSP), stating that, at a temperature
T , only one characteristic time scale exists: the crossover
time between sub-diffusive and normal diffusive ion be-
havior. The form

σ(ν)/σdc = F (ν/ν0) , (1)

for the conductivity spectra σ(ν), expresses the TTSP
in frequency space, with σdc the dc conductivity, ν0 the
crossover frequency (both temperature dependent), and
F the scaling function (which depends on the compound).

In 1985, Summerfield proposed that ν0 = σdcT for
amorphous semiconductors [6]. This assumption has also
been shown to be valid on some single ion conducting
glasses [3–5, 7], but cannot be applied generally. The

conductivity spectra fail to collapse as suggested by Sum-
merfield not only for various mixed alkali glasses [8] but
also for single ion tellurite glasses [9]. In the latter case
the universal form of the spectra is obtained by adopting
ν0 = σdcT/T

α, at the cost of introducing a new param-
eter α. More recently, this kind of universality has been
demonstrated for the conductivity spectra of polyelec-
trolyte complexes [10].

In this Letter, we report an oscillatory behavior ob-
served in electrical conductivity measurements on tellu-
rite glasses at frequencies around 1 MHz. These glasses
have a mainly ionic conductivity behavior, with the alka-
line cations as charge carriers. Generally, at frequencies
above 100 Hz and temperatures bellow the glass tran-
sition temperature Tg, there is little dispersion in the
electrical conductivity and the response of the system
is related to the immediate vicinity of the alkali cation.
The presence of an oscillating modulation is a clear indi-
cation of the existence of several relevant length scale in
the ion diffusion problem, and that simple scaling forms
as Eq. (1) cannot be applied. We propose an interpre-
tation of this phenomenon based on the structure of the
glass at intermediate mesoscopic length scales.

Experimental- The samples were prepared by a
standard melt quenching technique from initial mix-
tures of proper quantities of components (99.99%
pure): TeO2, V2O5, MoO3, and Na2CO3 or
Li2CO3. The amorphous character of each result-
ing solid, 0.6Na2O-0.4[0.5V2O50.5MoO3]-2TeO2, with
Tg = 535.7K, and 0.6Li2O-0.4[0.5V2O50.5MoO3]-2TeO2

with Tg = 539.5K, was tested by X-ray diffraction analy-
sis and confirmed by the Differential Scanning Calorime-
try (DSC). Glass disks of thickness ranging between
0.5 − 1.0 mm, were cut from the obtained cylinder and
polished with very fine quality lapping papers. The elec-
trodes for electrical measurements were made using silver
conducting paint to which metallic leads were attached.
The conductivity of each sample σ was determined, as a
function of the frequency ν, by standard a. c. impedance
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FIG. 1. (Color online) Experimental a. c. elec-
trical conductivities as a function of the frequency at
three different temperatures: 223K (red squares), 353K
(green triangles), 473K (blue circles). Top panel:
0.6Na2O-0.4[0.5V2O50.5MoO3]-2TeO2 compound. Lower
panel: 0.6Li2O-0.4[0.5V2O50.5MoO3]-2TeO2 compound. Er-
rors are smaller than symbol sizes

methods using a Novocontrol BDS-80 system. We have
explored the electrical response at three distinct values
of the temperature T : 223K, 353K and 473K. The ap-
plied voltages V (t) = Va cos(2πνt) with a small ampli-
tude Va = 100 mV ensured a linear response throughout
the frequency range.

The experimental conductivity spectra of the obtained
compounds are plotted in Fig. 1. A simple inspection of
this figure reveals that, as the frequency increases, σ(ν)
shows not only the usually expected crossover from a
nearly constant conductivity (out of the plot scale for
the lower temperatures), to a power-law behavior, but
also that an oscillatory modulation appears at larger fre-
quencies (ν ∼ 1MHz). Note also that the amplitude of
the oscillations decreases with the increasing of temper-
ature, and becomes negligible for high enough T .

Interpretation- Ion conducting glasses can be con-
sidered as weak electrolytes where a density ρ of ions,
which depends on temperature, becomes mobile and ex-
plore the sample in a random walk (RW) [11]. Two basic
hopping mechanisms have been proposed [12]. In the
first, the so called network hopping, the diffusing ion
moves by jumps in a random network consisting only
on bridging oxygens (BO). These hoppings involve little
conformational change in the network, and have a rela-
tively small activation energy ∆Enet (≈ 0). In the second
mechanism, referred to as intrachannel hopping, the al-

FIG. 2. Sketch of single ion diffusion in an oxide glass. At
short distances, the behavior is dominated by hoppings in a
network of BO’s only; with a very small activation energy
∆Enet. When this network does not percolate the sample,
jumps among NBO’s, with a high activation energy ∆Eic (�
∆Enet), play a role.

kalies are mainly coordinated to non-bridging oxygens
(NBO), and mobile ions diffuse in a network of conduct-
ing channels, which results of connecting NBO’s together.
These jumps do entail important modifications in the lo-
cal NBO and BO configurations, and a comparatively
high activation energy ∆Eic (� ∆Enet) results. Though
there exist materials where the ionic transport can be
represented with one of these two ideal networks (com-
pensated aluminosilicates, the first; silicates, the second),
in general, both mechanisms are present.

In the first stages of the diffusive motion, ion migra-
tion occurs mainly by network hopping due to energetic
reasons. However, if the random network of BO’s does
not percolate the sample but consists on disconnected re-
gions, after a typical time t1, the ion will reach the border
of one of these regions, the diffusion will slow down, and
the particle will behave as if trapped in a cage and with
an escape time τ . In addition, if the typical linear size
of a cage is not so large, τ ∼ exp(Eic/kBT ) (kB is the
Boltzmann constant), and we expect the behavior of mo-
bile ions sketched in Fig. 2. Thus, at intermediate times
t (t1 < t < τ), the ion mean-square displacement be-
haves as ∆2r(t) ∼ tη, with a very small RW exponent
(η ' 0), because of the effect of the cages. For times
longer than τ , the ions become able to explore the whole
sample, and normal diffusion results (η ' 1) if large-scale
homogeneity is assumed.

According to the linear response theory, the conductiv-
ity spectrum is related to the ion mean-square displace-
ment by

σ(ν) = −2π2ν2
βρe2

dHR
lim
ε→0+

∫ ∞
0

dt∆2r(t) cos(2πνt)e−εt,

(2)
where β = 1/kBT , d is the substrate dimension, e is the
ion charge, and HR is the Haven ratio, which expresses
the multi-particle correlations [13]. A simple dimensional
analysis of Eq. (2) leads to
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∆2r(t) ∼ tη ⇔ σ(ν) ∼ ν1−η, (3)

and then, the above mentioned change in the kinetics
of diffusion is reflected in the behavior of the function
σ(ν) ∼ νζ , which, as the frequency increases, undergoes
the crossover ζ ' 0 −→ ζ ' 1.

Long-time or short-frequency ion behavior can be cap-
tured by modeling the substrate as a set of cells of con-
venient size, separated by energetic barriers of height
∆Eic. However, to understand the mechanisms respon-
sible for the oscillations appearing at higher frequencies,
we have to watch inside these cells, at distances larger
than atomic radius but smaller than cell typical size. In
what follows, we show that the experimental results in
Fig. 1 can be qualitatively reproduced if we assume that
the BO network has a fractal structure, similar to the
well-known Vicsek model [14].

For a single particle diffusing on a self-similar sub-
strate, a hierarchical set of length-dependent diffusion
coefficients {D(n), n ∈ N} exists, with {D(n)/D(n+1) =
1 + λ, n ∈ N}, and where λ > 0 is a constant; mean-
ing that the RW mean-square displacement behaves as
∆2r(t) ∼ D(n)t, for

√
∆2r in the range (Ln, Ln+1), where

L is the basic length of the fractal. The decreasing of the
diffusion coefficient with the increasing of the length scale
produces an oscillating modulation in ∆2r(t) [15], and,
according to Eq. (2), also in σ(ν). Note that oscillations
in the mean-square displacement at short times imply
oscillations in the conductivity at high frequencies.

The most relevant aspects of RW in a self-similar struc-
ture can be effectively captured by a one-dimensional
model, in which L and λ are introduced as parame-
ters [16]. Thus, to keep our approach simple we consider
a particle moving on a periodic lattice in one dimension,
with the unit cell as sketched in Fig. 3. At every time
step the particle can hop to a nearest neighbor lattice
site. The hopping rates depend on the initial and final
sites only and are represented in the drawing by verti-
cal segments or barriers. Two kinds of barriers exist.
The topological barriers (dashed segments) correspond
to the network hopping processes. Their rates, which do
not depend on temperature and decrease with the length
scale, were obtained from the minimal self-similar model
in Ref. [16]. For concreteness, we have chosen L = 2
and 1 + λ = 20, leading to k1/k0 = 2.56 × 10−2 and
k2/k0 = 6.41 × 10−4. The energetic barriers (full seg-
ments) correspond to the intrachannel hopping processes
occurring at a rate q = k0 exp(−Eic/kBT ).

Let us assume that at a low enough temperature T1
the structure where mobile ions diffuse can be modeled
by a periodic array of the unit cells in Fig. 3. We fix
T1 by asking that the corresponding intrachannel tran-
sition rate is q(T1) = 10−12k0. For this substrate, the
RW mean-square displacement as a function of time, ob-
tained by Monte Carlo simulations, is shown in Fig. 4-a
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a

FIG. 3. A one-dimensional unit cell. The topological hop-
ping rates ki (i = 0, 1, 2) represent network hoppings. They
are built in a self-similar manner and do not depend on tem-
perature. The energetic hopping rate q = k0 exp(−Eic/kBT )
accounts for intrachannel jumps.

(lower data points). The results were averaged over 104

independent runs with random initial positions. Three
different regimes can be clearly observed. At short times,
∆2r(t) exhibits a sub-diffusive power-law behavior mod-
ulated by log-periodic oscillations due to the self-similar
structure of the unit cell. At intermediate times, it shows
a plateau, caused by the constraint in diffusion imposed
by the energetic barriers. Finally, at long enough times
(� 1012/k0), ∆2r(t) ∼ t. As explained in Ref. [16], the
crossovers among the length scales `n = a2n, for n = 0, 1,
and 2, cause a sub-diffusive behavior modulated by oscil-
lations. At distances larger than 8a, the substrate can be
considered as periodic, and the diffusion becomes normal.

At a higher temperature, we consider the possibility of
some level of randomness in the BO network, which we
introduce in the model by shuffling the locations of the
topological barriers. Although the so-obtained substrate
will depend on the probability distribution function in-
volved in the shuffle procedure, it has been shown that,
in the limit of full randomization, the oscillating modula-
tion is washed out but the RW exponent remains as in the
self-similar substrate [17]. By using the MC protocol de-
scribed above, we have studied the RW of a single particle
at a temperature T2 = 2T1, giving an intranetwork hop-

ping rate (k0 units) q(T2)/k0 = (q(T1)/k0)
1/2

= 10−6.
We have used a substrate in which the topological barri-
ers are randomized in the 30% of the cells (the other 70%
remain ordered as in Fig. 3). These values are arbitrary
but useful to appreciate the trend of the effects of ran-
domness. The corresponding numerical RW mean-square
displacement is plotted as a function of time in Fig. 4-a
(upper data points). As compared with the behavior at
T1, the amplitude of the oscillations decreases because of
randomness, and the normal diffusion regime is reached
at a shorter time due to the increasing of the rate q.

Using the data in Fig. 4-a, we have calculated the cor-
responding electrical conductivities, by numerical inte-
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FIG. 4. (Color online) (a) Mean-square displacement as func-
tion of time for the one-dimensional minimal model at two
temperatures T1 (red-lower symbols) and T2 = 2T1 (blue-
upper symbols). (b) Conductivity spectra calculated with
the data in (a).

gration of Eq. (2), which can be rewritten as

σ(ν;β) = −C1 (βρ/β1ρ1) I(ν;β) . (4)

Here ρ1 is the carrier density at the inverse tem-
perature β1 = 1/kBT1, C1 is a reference conduc-
tivity C1 = 2e2k0a

2β1ρ1/HR, and I(ν;β) is the non-
dimensional function

I(ν;β) = lim
ε→0+

∫ ∞
0

dt k0

(
νπ

k0

)2
∆2r(t;β)

a2
cos(2πνt)e−εt.

(5)

The density of mobile ions depends strongly on tem-
perature. It has been reported that ρ increases in a factor
of around 102 when T is doubled from 200K to 400K [11].
As we want to relate T1 with the lowest temperature of
our measurements (see Fig. 1), we use a value of 50 as
a good estimate of the factor in parentheses in Eq. (4),
when T1 ' 200K, and β = β2 = β1/2. We neglect the
possible variation of HR with the temperature. The nu-
merical conductivity spectra are plotted in Fig. 4-b. Let

us remark the good qualitative agreement between model
and experiment.

In summary, we report for the first time the experi-
mental ac conductivity spectra of tellurite glasses show-
ing oscillatory modulations at frequencies around MHz,
which reflect a non-trivial structure of the glass at meso-
scopic distances. In order to account for these oscilla-
tions, we introduce a minimal model describing ion dif-
fusion in a one-dimensional substrate with a short-length
fractal structure; self-similar at low enough T , and fully
disordered for T <∼ Tg. We find a very good qualitative
agreement between theoretical and experimental results,
which supports our hypothesis that a fractal structure
exists in oxide glasses at intermediate length scales.
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