29,377 research outputs found

    Elastic properties of carbon nanotubes and their heterojunctions

    Get PDF
    Comprehensive studies on the modelling and numerical simulation of the mechanical behaviour under tension, bending and torsion of single-walled carbon nanotubes and their heterojunctions are performed. It is proposed to deduce the mechanical properties of the carbon nanotubes heterojunctions from the knowledge of the mechanical properties of the single-walled carbon nanotubes, which are their constituent key unit

    Detection of new eruptions in the Magellanic Clouds LBVs R 40 and R 110

    Full text link
    We performed a spectroscopic and photometric analysis to study new eruptions in two luminous blue variables (LBVs) in the Magellanic Clouds. We detected a strong new eruption in the LBV R40 that reached V9.2V \sim 9.2 in 2016, which is around 1.31.3 mag brighter than the minimum registered in 1985. During this new eruption, the star changed from an A-type to a late F-type spectrum. Based on photometric and spectroscopic empirical calibrations and synthetic spectral modeling, we determine that R\,40 reached Teff=58006300T_{\mathrm{eff}} = 5800-6300~K during this new eruption. This object is thereby probably one of the coolest identified LBVs. We could also identify an enrichment of nitrogen and r- and s-process elements. We detected a weak eruption in the LBV R 110 with a maximum of V9.9V \sim 9.9 mag in 2011, that is, around 1.01.0 mag brighter than in the quiescent phase. On the other hand, this new eruption is about 0.20.2 mag fainter than the first eruption detected in 1990, but the temperature did not decrease below 8500 K. Spitzer spectra show indications of cool dust in the circumstellar environment of both stars, but no hot or warm dust was present, except by the probable presence of PAHs in R\,110. We also discuss a possible post-red supergiant nature for both stars

    Enhanced Optical Dichroism of Graphene Nanoribbons

    Get PDF
    The optical conductivity of graphene nanoribbons is analytical and exactly derived. It is shown that the absence of translation invariance along the transverse direction allows considerable intra-band absorption in a narrow frequency window that varies with the ribbon width, and lies in the THz range domain for ribbons 10-100nm wide. In this spectral region the absorption anisotropy can be as high as two orders of magnitude, which renders the medium strongly dichroic, and allows for a very high degree of polarization (up to ~85) with just a single layer of graphene. The effect is resilient to level broadening of the ribbon spectrum potentially induced by disorder. Using a cavity for impedance enhancement, or a stack of few layer nanoribbons, these values can reach almost 100%. This opens a potential prospect of employing graphene ribbon structures as efficient polarizers in the far IR and THz frequencies.Comment: Revised version. 10 pages, 7 figure

    Non-Collinear Ferromagnetic Luttinger Liquids

    Full text link
    The presence of electron-electron interactions in one dimension profoundly changes the properties of a system. The separation of charge and spin degrees of freedom is just one example. We consider what happens when a system consisting of a ferromagnetic region of non-collinearity, i.e. a domain wall, is coupled to interacting electrons in one-dimension (more specifically a Luttinger liquid). The ferromagnetism breaks spin charge separation and the presence of the domain wall introduces a spin dependent scatterer into the problem. The absence of spin charge separation and the effects of the electron correlations results in very different behaviour for the excitations in the system and for spin-transfer-torque effects in this model.Comment: 6 pages, submitted to Journal of Physics: Conference Series for JEMS 201

    Intelligent clinical decision support system for managing COPD patients

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. Health remote monitoring systems (HRMSs) play a crucial role in managing COPD patients by identifying anomalies in their biometric signs and alerting healthcare professionals. By analyzing the relationships between biometric signs and environmental factors, it is possible to develop artificial intelligence models that are capable of inferring patients’ future health deterioration risks. In this research work, we review recent works in this area and develop an intelligent clinical decision support system (CIDSS) that is capable of providing early information concerning patient health evolution and risk analysis in order to support the treatment of COPD patients. The present work’s CIDSS is composed of two main modules: the vital signs prediction module and the early warning score calculation module, which generate the patient health information and deterioration risks, respectively. Additionally, the CIDSS generates alerts whenever a biometric sign measurement falls outside the allowed range for a patient or in case a basal value changes significantly. Finally, the system was implemented and assessed in a real case and validated in clinical terms through an evaluation survey answered by healthcare professionals involved in the project. In conclusion, the CIDSS proves to be a useful and valuable tool for medical and healthcare professionals, enabling proactive intervention and facilitating adjustments to the medical treatment of patients.info:eu-repo/semantics/publishedVersio

    BRS Vitória: nova cultivar de bananeira do subgrupo prata para o agronegócio no Estado do Amazonas.

    Get PDF
    Características fitotécnicas da cultivar BRS Vitória. Reação da cultivar Vitória às principais doenças e pragas.bitstream/item/64259/1/ComTec-34-2005.pd

    BRS Japira: cultivar de bananeira resistente à sigatoka-negra e à antracnose para o Estado do Amazonas.

    Get PDF
    Características fitotécnicas da cultivar BRS Japira. Reação da cultivar Japira às principais doenças e pragas.bitstream/item/64261/1/ComTec-35-2005.pd

    Disorder Induced Localized States in Graphene

    Get PDF
    We consider the electronic structure near vacancies in the half-filled honeycomb lattice. It is shown that vacancies induce the formation of localized states. When particle-hole symmetry is broken, localized states become resonances close to the Fermi level. We also study the problem of a finite density of vacancies, obtaining the electronic density of states, and discussing the issue of electronic localization in these systems. Our results also have relevance for the problem of disorder in d-wave superconductors.Comment: Replaced with published version. 4 pages, 4 figures. Fig. 1 was revise
    corecore