3,011 research outputs found

    Dynamical Models in Quantitative Genetics

    Get PDF
    In this paper the author investigates models in quantitative genetics and shows that under quite reasonable assumptions the dynamics can display rather counter-intuitive behavior. This research was conducted as part of the Dynamics of Macrosystems Feasibility Study in the System and Decision Sciences Program

    The homestake surface-underground scintillations: Description

    Get PDF
    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described

    (3+2) Neutrino Scheme From A Singular Double See-Saw Mechanism

    Full text link
    We obtain a 3+2 neutrino spectrum within a left-right symmetric framework by invoking a singular double see-saw mechanism. Higgs doublets are employed to break SUR(2)SU_{R}(2) and three additional fermions, singlets under the left-right symmetric gauge group, are included. The introduction of a singularity into the singlet fermion Majorana mass matrix results in a light neutrino sector of three neutrinos containing predominantly ναL\nu_{\alpha L}, α=e,μ,τ\alpha=e,\mu,\tau, separated from two neutrinos containing a small ναL\nu_{\alpha L} component. The resulting active-sterile mixing in the 5×55\times 5 mixing matrix is specified once the mass eigenvalues and the 3×33\times3 submatrix corresponding to the MNS mixing matrix are known.Comment: 5 pages, matches published versio

    Pleiotropy in developmental regulation by flowering‐pathway genes: is it an evolutionary constraint?

    Get PDF
    Pleiotropy occurs when one gene influences more than one trait, contributing to genetic correlations among traits. Consequently, it is considered a constraint on the evolution of adaptive phenotypes because of potential antagonistic selection on correlated traits, or, alternatively, preservation of functional trait combinations. Such evolutionary constraints may be mitigated by the evolution of different functions of pleiotropic genes in their regulation of different traits. Arabidopsis thaliana flowering-time genes, and the pathways in which they operate, are among the most thoroughly studied regarding molecular functions, phenotypic effects, and adaptive significance. Many of them show strong pleiotropic effects. Here, we review examples of pleiotropy of flowering-time genes and highlight those that also influence seed germination. Some genes appear to operate in the same genetic pathways when regulating both traits, whereas others show diversity of function in their regulation, either interacting with the same genetic partners but in different ways or potentially interacting with different partners. We discuss how functional diversification of pleiotropic genes in the regulation of different traits across the life cycle may mitigate evolutionary constraints of pleiotropy, permitting traits to respond more independently to environmental cues, and how it may even contribute to the evolutionary divergence of gene function across taxa.Fil: Auge, Gabriela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Penfield, Steven. John Innes Centre; Reino UnidoFil: Donohue, Kathleen. University of Duke; Estados Unido

    Slepton pair production in e+e- collision in supersymmetric left-right model

    Full text link
    The pair production of sleptons in electron-positron collisions is investigated in a supersymmetric left-right model. The cross section is found considerably larger than in the minimal supersymmetric version of the Standard Model (MSSM) because of more contributing graphs. A novel process is a doubly charged higgsino exchange in u-channel, which makes the angular distribution of the final state particles and the final state asymmetries to differ from those of the MSSM. It also allows for the flavour non-diagonal final states e~μ~\tilde e\tilde\mu, e~τ~\tilde e\tilde\tau and μ~τ~\tilde \mu\tilde\tau, forbidden in the MSSM. These processes also give indirect information about neutrino mixings since they depend on the same couplings as the Majorana mass terms of the right-handed neutrinos.Comment: 13 pages + 4figures available upon request, HU-SEFT R 1993-1

    Status of the Solar Neutrino Puzzle

    Get PDF
    Using the latest results from the solar neutrino experiments and a few standard assumptions, I show that the popular solar models are ruled out at the 3σ\sigma level or at least TWO of the experiments are incorrect. Alternatively, one of the assumptions could be in error. These assumptions are spelled out in detail as well as how each one affects the argument.Comment: Latex, 8 pages + 4 uuencoded figures, minor changes made, FERMILAB-PUB/273-

    How to Block Cartel Formation and Price-Fixing

    Get PDF
    Abstract written by the AEI-Brookings Joint Center: Allowing foreign buyers of goods produced by international cartels to pursue civil antitrust damages in U.S. courts would better deter cartel formation and price-fixing than do sanctions currently imposed by global criminal and civil justice systems.Technology and Industry, Regulatory Reform, Other Topics

    Born's rule from measurements of classical signals by threshold detectors which are properly calibrated

    Full text link
    The very old problem of the statistical content of quantum mechanics (QM) is studied in a novel framework. The Born's rule (one of the basic postulates of QM) is derived from theory of classical random signals. We present a measurement scheme which transforms continuous signals into discrete clicks and reproduces the Born's rule. This is the sheme of threshold type detection. Calibration of detectors plays a crucial role.Comment: The problem of double clicks is resolved; hence, one can proceed in purely wave framework, i.e., the wave-partcile duality has been resolved in favor of the wave picture of prequantum realit

    Lethal mutagenesis and evolutionary epidemiology

    Get PDF
    The lethal mutagenesis hypothesis states that within-host populations of pathogens can be driven to extinction when the load of deleterious mutations is artificially increased with a mutagen, and becomes too high for the population to be maintained. Although chemical mutagens have been shown to lead to important reductions in viral titres for a wide variety of RNA viruses, the theoretical underpinnings of this process are still not clearly established. A few recent models sought to describe lethal mutagenesis but they often relied on restrictive assumptions. We extend this earlier work in two novel directions. First, we derive the dynamics of the genetic load in a multivariate Gaussian fitness landscape akin to classical quantitative genetics models. This fitness landscape yields a continuous distribution of mutation effects on fitness, ranging from deleterious to beneficial (i.e. compensatory) mutations. We also include an additional class of lethal mutations. Second, we couple this evolutionary model with an epidemiological model accounting for the within-host dynamics of the pathogen. We derive the epidemiological and evolutionary equilibrium of the system. At this equilibrium, the density of the pathogen is expected to decrease linearly with the genomic mutation rate U. We also provide a simple expression for the critical mutation rate leading to extinction. Stochastic simulations show that these predictions are accurate for a broad range of parameter values. As they depend on a small set of measurable epidemiological and evolutionary parameters, we used available information on several viruses to make quantitative and testable predictions on critical mutation rates. In the light of this model, we discuss the feasibility of lethal mutagenesis as an efficient therapeutic strategy
    corecore