708 research outputs found

    Is local scale invariance a generic property of ageing phenomena ?

    Full text link
    In contrast to recent claims by Enss, Henkel, Picone, and Schollwoeck [J. Phys. A 37, 10479] it is shown that the critical autoresponse function of the 1+1-dimensional contact process is not in agreement with the predictions of local scale invariance.Comment: 7 pages, 3 figures, final form, c++ source code on reques

    Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    Full text link
    13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilisation to mediate small frequent sawteeth and retain a small q = 1 radius.Comment: 29 pages, 16 figure

    Nonequilibrium wetting of finite samples

    Full text link
    As a canonical model for wetting far from thermal equilibrium we study a Kardar-Parisi-Zhang interface growing on top of a hard-core substrate. Depending on the average growth velocity the model exhibits a non-equilibrium wetting transition which is characterized by an additional surface critical exponent theta. Simulating the single-step model in one spatial dimension we provide accurate numerical estimates for theta and investigate the distribution of contact points between the substrate and the interface as a function of time. Moreover, we study the influence of finite-size effects, in particular the time needed until a finite substrate is completely covered by the wetting layer for the first time.Comment: 17 pages, 8 figures, revisio

    Pair contact process with diffusion - A new type of nonequilibrium critical behavior?

    Full text link
    Recently Carlon et. al. investigated the critical behavior of the pair contact process with diffusion [cond-mat/9912347]. Using density matrix renormalization group methods, they estimate the critical exponents, raising the possibility that the transition might belong to the same universality class as branching annihilating random walks with even numbers of offspring. This is surprising since the model does not have an explicit parity-conserving symmetry. In order to understand this contradiction, we estimate the critical exponents by Monte Carlo simulations. The results suggest that the transition might belong to a different universality class that has not been investigated before.Comment: RevTeX, 3 pages, 2 eps figures, adapted to final version of cond-mat/991234

    Non-equilibrium Phase Transitions with Long-Range Interactions

    Full text link
    This review article gives an overview of recent progress in the field of non-equilibrium phase transitions into absorbing states with long-range interactions. It focuses on two possible types of long-range interactions. The first one is to replace nearest-neighbor couplings by unrestricted Levy flights with a power-law distribution P(r) ~ r^(-d-sigma) controlled by an exponent sigma. Similarly, the temporal evolution can be modified by introducing waiting times Dt between subsequent moves which are distributed algebraically as P(Dt)~ (Dt)^(-1-kappa). It turns out that such systems with Levy-distributed long-range interactions still exhibit a continuous phase transition with critical exponents varying continuously with sigma and/or kappa in certain ranges of the parameter space. In a field-theoretical framework such algebraically distributed long-range interactions can be accounted for by replacing the differential operators nabla^2 and d/dt with fractional derivatives nabla^sigma and (d/dt)^kappa. As another possibility, one may introduce algebraically decaying long-range interactions which cannot exceed the actual distance to the nearest particle. Such interactions are motivated by studies of non-equilibrium growth processes and may be interpreted as Levy flights cut off at the actual distance to the nearest particle. In the continuum limit such truncated Levy flights can be described to leading order by terms involving fractional powers of the density field while the differential operators remain short-ranged.Comment: LaTeX, 39 pages, 13 figures, minor revision

    Correlated Initial Conditions in Directed Percolation

    Full text link
    We investigate the influence of correlated initial conditions on the temporal evolution of a (d+1)-dimensional critical directed percolation process. Generating initial states with correlations ~r^(sigma-d) we observe that the density of active sites in Monte-Carlo simulations evolves as rho(t)~t^kappa. The exponent kappa depends continuously on sigma and varies in the range -beta/nu_{||}<=kappa<=eta. Our numerical results are confirmed by an exact field-theoretical renormalization group calculation.Comment: 10 pages, RevTeX, including 5 encapsulated postscript figure

    Binary spreading process with parity conservation

    Full text link
    Recently there has been a debate concerning the universal properties of the phase transition in the pair contact process with diffusion (PCPD) 2A→3A,2A→∅2A\to 3A, 2A\to \emptyset. Although some of the critical exponents seem to coincide with those of the so-called parity-conserving universality class, it was suggested that the PCPD might represent an independent class of phase transitions. This point of view is motivated by the argument that the PCPD does not conserve parity of the particle number. In the present work we pose the question what happens if the parity conservation law is restored. To this end we consider the the reaction-diffusion process 2A→4A,2A→∅2A\to 4A, 2A\to \emptyset. Surprisingly this process displays the same type of critical behavior, leading to the conclusion that the most important characteristics of the PCPD is the use of binary reactions for spreading, regardless of whether parity is conserved or not.Comment: RevTex, 4pages, 4 eps figure

    Yang-Lee zeros for a nonequilibrium phase transition

    Full text link
    Equilibrium systems which exhibit a phase transition can be studied by investigating the complex zeros of the partition function. This method, pioneered by Yang and Lee, has been widely used in equilibrium statistical physics. We show that an analogous treatment is possible for a nonequilibrium phase transition into an absorbing state. By investigating the complex zeros of the survival probability of directed percolation processes we demonstrate that the zeros provide information about universal properties. Moreover we identify certain non-trivial points where the survival probability for bond percolation can be computed exactly.Comment: LaTeX, IOP-style, 13 pages, 10 eps figure
    • …
    corecore