This review article gives an overview of recent progress in the field of
non-equilibrium phase transitions into absorbing states with long-range
interactions. It focuses on two possible types of long-range interactions. The
first one is to replace nearest-neighbor couplings by unrestricted Levy flights
with a power-law distribution P(r) ~ r^(-d-sigma) controlled by an exponent
sigma. Similarly, the temporal evolution can be modified by introducing waiting
times Dt between subsequent moves which are distributed algebraically as P(Dt)~
(Dt)^(-1-kappa). It turns out that such systems with Levy-distributed
long-range interactions still exhibit a continuous phase transition with
critical exponents varying continuously with sigma and/or kappa in certain
ranges of the parameter space. In a field-theoretical framework such
algebraically distributed long-range interactions can be accounted for by
replacing the differential operators nabla^2 and d/dt with fractional
derivatives nabla^sigma and (d/dt)^kappa. As another possibility, one may
introduce algebraically decaying long-range interactions which cannot exceed
the actual distance to the nearest particle. Such interactions are motivated by
studies of non-equilibrium growth processes and may be interpreted as Levy
flights cut off at the actual distance to the nearest particle. In the
continuum limit such truncated Levy flights can be described to leading order
by terms involving fractional powers of the density field while the
differential operators remain short-ranged.Comment: LaTeX, 39 pages, 13 figures, minor revision