14,307 research outputs found
Gauge equivalence in QCD: the Weyl and Coulomb gauges
The Weyl-gauge ( QCD Hamiltonian is unitarily transformed to a
representation in which it is expressed entirely in terms of gauge-invariant
quark and gluon fields. In a subspace of gauge-invariant states we have
constructed that implement the non-Abelian Gauss's law, this unitarily
transformed Weyl-gauge Hamiltonian can be further transformed and, under
appropriate circumstances, can be identified with the QCD Hamiltonian in the
Coulomb gauge. We demonstrate an isomorphism that materially facilitates the
application of this Hamiltonian to a variety of physical processes, including
the evaluation of -matrix elements. This isomorphism relates the
gauge-invariant representation of the Hamiltonian and the required set of
gauge-invariant states to a Hamiltonian of the same functional form but
dependent on ordinary unconstrained Weyl-gauge fields operating within a space
of ``standard'' perturbative states. The fact that the gauge-invariant
chromoelectric field is not hermitian has important implications for the
functional form of the Hamiltonian finally obtained. When this nonhermiticity
is taken into account, the ``extra'' vertices in Christ and Lee's Coulomb-gauge
Hamiltonian are natural outgrowths of the formalism. When this nonhermiticity
is neglected, the Hamiltonian used in the earlier work of Gribov and others
results.Comment: 25 page
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
Recent developments in dynamical systems theory have revealed long-lived and
coherent Lagrangian (i.e., material) eddies in incompressible,
satellite-derived surface ocean velocity fields. Paradoxically, observed
drifting buoys and floating matter tend to create dissipative-looking patterns
near oceanic eddies, which appear to be inconsistent with the conservative
fluid particle patterns created by coherent Lagrangian eddies. Here we show
that inclusion of inertial effects (i.e., those produced by the buoyancy and
size finiteness of an object) in a rotating two-dimensional incompressible flow
context resolves this paradox. Specifically, we obtain that anticyclonic
coherent Lagrangian eddies attract (repel) negatively (positively) buoyant
finite-size particles, while cyclonic coherent Lagrangian eddies attract
(repel) positively (negatively) buoyant finite-size particles. We show how
these results explain dissipative-looking satellite-tracked surface drifter and
subsurface float trajectories, as well as satellite-derived \emph{Sargassum}
distributions.Comment: Submitted to \emph{Chaos} Focus Issue on Objective detection of
Lagrangian Coherent Structures. Revised 23-Feb-1
Design and Fabrication of the NASA Decoupler Pylon for the F-16 Aircraft
The NASA Decoupler Pylon is a passive means of suppressing wing-store flutter. The feasibility of demonstrating this concept on the F-16 aircraft was established through model wind tunnel tests and analyses. As a result of these tests and studies a ship set of Decoupler Pylons was designed and fabricated for a flight test demonstration on the F-16 aircraft. Basic design criteria were developed during the analysis study pertaining to pylon pitch stiffness, alignment system requirements, and damping requirements. A design was developed which utilized an electrical motor for the pylon alignment system. The design uses a four pin, two link pivot design which results in a remote pivot located at the center of gravity of the store when the store is in the aligned position. The pitch spring was fabricated from a tapered constant stress cantilevered beam. The pylon has the same external lines as the existing production pylon and is designed to use a MAU-12 ejection rack which is the same as the one used with the production pylon. The detailed design and fabrication was supported with a complete ground test of the pylon prior to shipment to NASA
Anharmonic Self-Energy of Phonons: Ab Initio Calculations and Neutron Spin Echo Measurements
We have calculated (ab initio) and measured (by spin-echo techniques) the
anharmonic self-energy of phonons at the X-point of the Brillouin zone for
isotopically pure germanium. The real part agrees with former, less accurate,
high temperature data obtained by inelastic neutron scattering on natural
germanium. For the imaginary part our results provide evidence that transverse
acoustic phonons at the X-point are very long lived at low temperatures, i.e.
their probability of decay approaches zero, as a consequence of an unusual
decay mechanism allowed by energy conservation.Comment: 8 pages, 2 figures, pdf fil
Persistent Transport Barrier on the West Florida Shelf
Analysis of drifter trajectories in the Gulf of Mexico has revealed the
existence of a region on the southern portion of the West Florida Shelf (WFS)
that is not visited by drifters that are released outside of the region. This
so-called ``forbidden zone'' (FZ) suggests the existence of a persistent
cross-shelf transport barrier on the southern portion of the WFS. In this
letter a year-long record of surface currents produced by a Hybrid-Coordinate
Ocean Model simulation of the WFS is used to identify Lagrangian coherent
structures (LCSs), which reveal the presence of a robust and persistent
cross-shelf transport barrier in approximately the same location as the
boundary of the FZ. The location of the cross-shelf transport barrier undergoes
a seasonal oscillation, being closer to the coast in the summer than in the
winter. A month-long record of surface currents inferred from high-frequency
(HF) radar measurements in a roughly 60 km 80 km region on the WFS off
Tampa Bay is also used to identify LCSs, which reveal the presence of robust
transient transport barriers. While the HF-radar-derived transport barriers
cannot be unambiguously linked to the boundary of the FZ, this analysis does
demonstrate the feasibility of monitoring transport barriers on the WFS using a
HF-radar-based measurement system. The implications of a persistent cross-shelf
transport barrier on the WFS for the development of harmful algal blooms on the
shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter
Quantum Gauge Equivalence in QED
We discuss gauge transformations in QED coupled to a charged spinor field,
and examine whether we can gauge-transform the entire formulation of the theory
from one gauge to another, so that not only the gauge and spinor fields, but
also the forms of the operator-valued Hamiltonians are transformed. The
discussion includes the covariant gauge, in which the gauge condition and
Gauss's law are not primary constraints on operator-valued quantities; it also
includes the Coulomb gauge, and the spatial axial gauge, in which the
constraints are imposed on operator-valued fields by applying the
Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb and
spatial axial gauges to what we call
``common form,'' in which all particle excitation modes have identical
properties. We also show that, once that common form has been reached, QED in
different gauges has a common time-evolution operator that defines
time-translation for states that represent systems of electrons and photons.
By combining gauge transformations with changes of representation from
standard to common form, the entire apparatus of a gauge theory can be
transformed from one gauge to another.Comment: Contribution for a special issue of Foundations of Physics honoring
Fritz Rohrlich; edited by Larry P. Horwitz, Tel-Aviv University, and Alwyn
van der Merwe, University of Denver (Plenum Publishing, New York); 40 pages,
REVTEX, Preprint UCONN-93-3, 1 figure available upon request from author
The global electroweak fit at NNLO and prospects for the LHC and ILC
For a long time, global fits of the electroweak sector of the Standard Model
(SM) have been used to exploit measurements of electroweak precision
observables at lepton colliders (LEP, SLC), together with measurements at
hadron colliders (Tevatron, LHC), and accurate theoretical predictions at
multi-loop level, to constrain free parameters of the SM, such as the Higgs and
top masses. Today, all fundamental SM parameters entering these fits are
experimentally determined, including information on the Higgs couplings, and
the global fits are used as powerful tools to assess the validity of the theory
and to constrain scenarios for new physics. Future measurements at the Large
Hadron Collider (LHC) and the International Linear Collider (ILC) promise to
improve the experimental precision of key observables used in the fits. This
paper presents updated electroweak fit results using newest NNLO theoretical
predictions, and prospects for the LHC and ILC. The impact of experimental and
theoretical uncertainties is analysed in detail. We compare constraints from
the electroweak fit on the Higgs couplings with direct LHC measurements, and
examine present and future prospects of these constraints using a model with
modified couplings of the Higgs boson to fermions and bosons.Comment: 26 pages, 9 figure
Topology of the gauge-invariant gauge field in two-color QCD
We investigate solutions to a nonlinear integral equation which has a central
role in implementing the non-Abelian Gauss's Law and in constructing
gauge-invariant quark and gluon fields. Here we concern ourselves with
solutions to this same equation that are not operator-valued, but are functions
of spatial variables and carry spatial and SU(2) indices. We obtain an
expression for the gauge-invariant gauge field in two-color QCD, define an
index that we will refer to as the ``winding number'' that characterizes it,
and show that this winding number is invariant to a small gauge transformation
of the gauge field on which our construction of the gauge-invariant gauge field
is based. We discuss the role of this gauge field in determining the winding
number of the gauge-invariant gauge field. We also show that when the winding
number of the gauge field is an integer , the gauge-invariant
gauge field manifests winding numbers that are not integers, and are
half-integers only when .Comment: 26 pages including 6 encapsulated postscript figures. Numerical
errors have been correcte
Precision Measurements of Stretching and Compression in Fluid Mixing
The mixing of an impurity into a flowing fluid is an important process in
many areas of science, including geophysical processes, chemical reactors, and
microfluidic devices. In some cases, for example periodic flows, the concepts
of nonlinear dynamics provide a deep theoretical basis for understanding
mixing. Unfortunately, the building blocks of this theory, i.e. the fixed
points and invariant manifolds of the associated Poincare map, have remained
inaccessible to direct experimental study, thus limiting the insight that could
be obtained. Using precision measurements of tracer particle trajectories in a
two-dimensional fluid flow producing chaotic mixing, we directly measure the
time-dependent stretching and compression fields. These quantities, previously
available only numerically, attain local maxima along lines coinciding with the
stable and unstable manifolds, thus revealing the dynamical structures that
control mixing. Contours or level sets of a passive impurity field are found to
be aligned parallel to the lines of large compression (unstable manifolds) at
each instant. This connection appears to persist as the onset of turbulence is
approached.Comment: 5 pages, 5 figure
Gauge-invariant fields in the temporal gauge, Coulomb-gauge fields, and the Gribov ambiguity
We examine the relation between Coulomb-gauge fields and the gauge-invariant
fields constructed in the temporal gauge for two-color QCD by comparing a
variety of properties, including their equal-time commutation rules and those
of their conjugate chromoelectric fields. We also express the temporal-gauge
Hamiltonian in terms of gauge-invariant fields and show that it can be
interpreted as a sum of the Coulomb-gauge Hamiltonian and another part that is
important for determining the equations of motion of temporal-gauge fields, but
that can never affect the time evolution of ``physical'' state vectors. We also
discuss multiplicities of gauge-invariant temporal-gauge fields that belong to
different topological sectors and that, in previous work, were shown to be
based on the same underlying gauge-dependent temporal-gauge fields. We argue
that these multiplicities of gauge-invariant fields are manifestations of the
Gribov ambiguity. We show that the differential equation that bases the
multiplicities of gauge-invariant fields on their underlying gauge-dependent
temporal-gauge fields has nonlinearities identical to those of the ``Gribov''
equation, which demonstrates the non-uniqueness of Coulomb-gauge fields. These
multiplicities of gauge-invariant fields --- and, hence, Gribov copies ---
appear in the temporal gauge, but only with the imposition of Gauss's law and
the implementation of gauge invariance; they do not arise when the theory is
represented in terms of gauge-dependent fields and Gauss's law is left
unimplemented.Comment: 27 pages, 1 figure; text has been revised and references adde
- …