291 research outputs found

    How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse

    Get PDF
    Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model

    Cmah-dystrophin deficient mdx mice display an accelerated cardiac phenotype that is improved following peptide-PMO exon skipping treatment

    Get PDF
    Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids—the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah−/−;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah−/−;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah−/−;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah−/−;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah−/−;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics

    Sequential NMR assignments of labile protons in DNA using two-dimensional nuclear-Overhauser-enhancement spectroscopy with three jump-and-return pulse sequences

    Get PDF
    Two-dimensional nuclear Overhauser enhancement (NOESY) spectra of labile protons were recorded in H2O solutions of a protein and of a DNA duplex, using a modification of the standard NOESY experiment with all three 90 degree pulses replaced by jump-and-return sequences. For the protein as well as the DNA fragment the strategically important spectral regions could be recorded with good sensitivity and free of artifacts. Using this procedure, sequence-specific assignments were obtained for the imino protons, C2H of adenine, and C4NH2 of cytosine in a 23-base-pair DNA duplex which includes the 17-base-pair OR3 repressor binding site of bacteriophage lambda. Based on comparison with previously published results on the isolated OR3 binding site, these data were used for a study of chain termination effects on the chemical shifts of imino proton resonances of DNA duplexes

    Efficient inhibition of miR-155 function in vivo by peptide nucleic acids.

    Get PDF
    MicroRNAs (miRNAs) play an important role in diverse physiological processes and are potential therapeutic agents. Synthetic oligonucleotides (ONs) of different chemistries have proven successful for blocking miRNA expression. However, their specificity and efficiency have not been fully evaluated. Here, we show that peptide nucleic acids (PNAs) efficiently block a key inducible miRNA expressed in the haematopoietic system, miR-155, in cultured B cells as well as in mice. Remarkably, miR-155 inhibition by PNA in primary B cells was achieved in the absence of any transfection agent. In mice, the high efficiency of the treatment was demonstrated by a strong overlap in global gene expression between B cells isolated from anti-miR-155 PNA-treated and miR-155-deficient mice. Interestingly, PNA also induced additional changes in gene expression. Our analysis provides a useful platform to aid the design of efficient and specific anti-miRNA ONs for in vivo use

    The importance of service quality in British Muslim’s choice of an Islamic or non-Islamic bank account

    Get PDF
    Using an extended SERVQUAL model, this study identifies and compares the importance of service quality to Muslim consumers with an Islamic or non-Islamic bank account in a non-Muslim country, Britain. Eight group discussions and survey with 300 Muslims were conducted. Five dimensions of service quality were identified, i.e. Responsiveness, Credibility, Islamic Tangibles, Accessibility and Reputation. These differ in structure and content from the original SERVQUAL developed in the west and the subsequent CARTER model constructed in a Muslim country. In addition, significant differences were found in the importance rating of items by respondents holding an account with an Islamic bank compared to those with a non-Islamic bank account. This study is one of the first to identify and compare the importance of service quality between Islamic and non-Islamic bank account holders in a western non-Muslim country. The results advance our understanding of the impact of culture on SERVQUAL. The study provides insight into Muslims’ bank choice and helps bank managers of both Islamic and non-Islamic banks to focus their attention on the service quality dimensions that matter most to Muslim customers

    PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation

    Get PDF
    Numerous human genetic diseases are caused by mutations that give rise to aberrant alternative splicing. Recently, several of these debilitating disorders have been shown to be amenable for splice-correcting oligonucleotides (SCOs) that modify splicing patterns and restore the phenotype in experimental models. However, translational approaches are required to transform SCOs into usable drug products. In this study, we present a new cell-penetrating peptide, PepFect14 (PF14), which efficiently delivers SCOs to different cell models including HeLa pLuc705 and mdx mouse myotubes; a cell culture model of Duchenne’s muscular dystrophy (DMD). Non-covalent PF14-SCO nanocomplexes induce splice-correction at rates higher than the commercially available lipid-based vector Lipofectamine™ 2000 (LF2000) and remain active in the presence of serum. Furthermore, we demonstrate the feasibility of incorporating this delivery system into solid formulations that could be suitable for several therapeutic applications. Solid dispersion technique is utilized and the formed solid formulations are as active as the freshly prepared nanocomplexes in solution even when stored at an elevated temperatures for several weeks. In contrast, LF2000 drastically loses activity after being subjected to same procedure. This shows that using PF14 is a very promising translational approach for the delivery of SCOs in different pharmaceutical forms

    Targeting RNA Polymerase Primary σ70 as a Therapeutic Strategy against Methicillin-Resistant Staphylococcus aureus by Antisense Peptide Nucleic Acid

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes threatening infection-related mortality worldwide. Currently, spread of multi-drug resistance (MDR) MRSA limits therapeutic options and requires new approaches to "druggable" target discovery, as well as development of novel MRSA-active antibiotics. RNA polymerase primary σ⁷⁰ (encoded by gene rpoD) is a highly conserved prokaryotic factor essential for transcription initiation in exponentially growing cells of diverse S. aureus, implying potential for antisense inhibition. METHODOLOGY/PRINCIPAL FINDINGS: By synthesizing a serial of cell penetrating peptide conjugated peptide nucleic acids (PPNAs) based on software predicted parameters and further design optimization, we identified a target sequence (234 to 243 nt) within rpoD mRNA conserved region 3.0 being more sensitive to antisense inhibition. A (KFF)₃K peptide conjugated 10-mer complementary PNA (PPNA2332) was developed for potent micromolar-range growth inhibitory effects against four pathogenic S. aureus strains with different resistance phenotypes, including clinical vancomycin-intermediate resistance S. aureus and MDR-MRSA isolates. PPNA2332 showed bacteriocidal antisense effect at 3.2 fold of MIC value against MRSA/VISA Mu50, and its sequence specificity was demonstrated in that PPNA with scrambled PNA sequence (Scr PPNA2332) exhibited no growth inhibitory effect at higher concentrations. Also, PPNA2332 specifically interferes with rpoD mRNA, inhibiting translation of its protein product σ⁷⁰ in a concentration-dependent manner. Full decay of mRNA and suppressed expression of σ⁷⁰ were observed for 40 µM or 12.5 µM PPNA2332 treatment, respectively, but not for 40 µM Scr PPNA2332 treatment in pure culture of MRSA/VISA Mu50 strain. PPNA2332 (≥1 µM) essentially cleared lethal MRSA/VISA Mu50 infection in epithelial cell cultures, and eliminated viable bacterial cells in a time- and concentration- dependent manner, without showing any apparent toxicity at 10 µM. CONCLUSIONS: The present result suggested that RNAP primary σ⁷⁰ is a very promising candidate target for developing novel antisense antibiotic to treat severe MRSA infections

    Dystrophin involvement in peripheral circadian SRF signalling

    Get PDF
    Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation

    A Randomized Trial of a Brace for Patellofemoral Osteoarthritis Targeting Knee Pain and Bone Marrow Lesions.

    Get PDF
    Objective Braces used to treat (PF) osteoarthritis (OA) may reduce contact stress across the PF joint. We hypothesised that in PF OA, braces would decrease knee pain and shrink PF bone marrow lesions (BMLs). Methods Eligible subjects had painful PF OA. Subjects were randomly allocated to brace or no brace for 6 weeks. Knee MRIs were acquired at baseline and 6 weeks. We measured BMLs on post-contrast fat suppressed sagittal and proton density weighted axial images. The primary symptom outcome was change in pain at 6 weeks during a preselected painful activity, and the primary structural outcome was BML volume change in the PF joint. Analyses used multiple linear regression. Results We randomised 126 subjects aged 40–70 years (mean age 55.5  years; 72 females (57.1%)). Mean nominated visual analogue scale (0–10 cm) pain score at baseline was 6.5 cm. 94 knees (75%) had PF BMLs at baseline. Subjects wore the brace for a mean of 7.4 h/day. 6 subjects withdrew during the trial. After accounting for baseline values, the brace group had lower knee pain than the control group at 6 weeks (difference between groups −1.3 cm, 95% CI −2.0 to −0.7; p<0.001) and reduced PF BML volume (difference −490.6 mm3, 95% CI −929.5 to −51.7; p=0.03) but not tibiofemoral volume (difference −53.9 mm3, 95% CI −625.9 to 518.2; p=0.85). Conclusions A PF brace reduces BML volume in the targeted compartment of the knee, and relieves knee pain
    corecore