3,033 research outputs found

    Recovery of classical chaotic-like behaviour in a quantum three body problem

    Get PDF
    Recovering trajectories of quantum systems whose classical counterparts display chaotic behaviour has been a subject that has received a lot of interest over the last decade. However, these studies have focused on driven dissipative systems. The relevance and impact of chaotic-like phenomena to quantum systems has been highlighted in recent studies which have shown that quantum chaos is significant in some aspects of quantum computation and information processing. In this paper we study a three body system comprising of identical particles arranged so that the system's classical trajectories exhibit Hamiltonian chaos. Here we show that it is possible to recover very nearly classical-like chaotic trajectories from such a system through an unravelling of the master equation

    On open quantum systems, effective Hamiltonians and device characterization

    Get PDF
    High fidelity models, which support accurate device characterization and correctly account for environmental effects, are crucial to the engineering of scalable quantum technologies. As it ensures positivity of the density matrix, one preferred model for open systems describes the dynamics with a master equation in Lindblad form. The Linblad operators are rarely derived from first principles, resulting in dynamical models which miss those additional terms that must generally be added to bring the master equation into Lindblad form, together with concomitant other terms that must be assimilated into an effective Hamiltonian. In first principles derivations such additional terms are often cancelled (countered), frequently in an ad hoc manner. In the case of a Superconducting Quantum Interference Device (SQUID) coupled to an Ohmic bath, the resulting master equation implies the environment has a significant impact on the system's energy. We discuss the prospect of keeping or cancelling this impact; and note that, for the SQUID, measuring the magnetic susceptibility under control of the capacitive coupling strength and the externally applied flux, results in experimentally measurable differences between models. If this is not done correctly, device characterization will be prone to systemic errors.Comment: 5 pages, 3 figure

    Guidance and Control in a Josephson Charge Qubit

    Get PDF
    In this paper we propose a control strategy based on a classical guidance law and consider its use for an example system: a Josephson charge qubit. We demonstrate how the guidance law can be used to attain a desired qubit state using the standard qubit control fields.Comment: 9 pages, 5 figure

    Signatures of the collapse and revival of a spin Schr\"{o}dinger cat state in a continuously monitored field mode

    Full text link
    We study the effects of continuous measurement of the field mode during the collapse and revival of spin Schr\"{o}dinger cat states in the Tavis-Cummings model of N qubits (two-level quantum systems) coupled to a field mode. We show that a compromise between relatively weak and relatively strong continuous measurement will not completely destroy the collapse and revival dynamics while still providing enough signal-to-noise resolution to identify the signatures of the process in the measurement record. This type of measurement would in principle allow the verification of the occurrence of the collapse and revival of a spin Schr\"{o}dinger cat state.Comment: 5 pages, 2 figure

    Nonlinear backreaction in a quantum mechanical SQUID

    Get PDF
    In this paper we discuss the coupling between a quantum mechanical superconducting quantum interference device (SQUID) and an applied static magnetic field. We demonstrate that the backreaction of a SQUID on the applied field can interfere with the ability to bias the SQUID at values of the static (DC) magnetic flux at, or near to, transitions in the quantum mechanical SQUID.Comment: 9 pages, to be published in Phys. Rev.

    Non-linear dynamics, entanglement and the quantum-classical crossover of two coupled SQUID rings

    Full text link
    We explore the quantum-classical crossover of two coupled, identical, superconducting quantum interference device (SQUID) rings. We note that the motivation for this work is based on a study of a similar system comprising two coupled Duffing oscillators. In that work we showed that the entanglement characteristics of chaotic and periodic (entrained) solutions differed significantly and that in the classical limit entanglement was preserved only in the chaotic-like solutions. However, Duffing oscillators are a highly idealised toy model. Motivated by a wish to explore more experimentally realisable systems we now extend our work to an analysis of two coupled SQUID rings. We observe some differences in behaviour between the system that is based on SQUID rings rather than on Duffing oscillators. However, we show that the two systems share a common feature. That is, even when the SQUID ring's trajectories appear to follow (semi) classical orbits entanglement persists.Comment: 9 pages, 4 figures. Published as part of the proceedings of the 32nd International Workshop on Condensed Matter Theories (CMT32) Loughborough University, 2008 (invited paper

    Cool for Cats

    Get PDF
    The iconic Schr\"odinger's cat state describes a system that may be in a superposition of two macroscopically distinct states, for example two clearly separated oscillator coherent states. Quite apart from their role in understanding the quantum classical boundary, such states have been suggested as offering a quantum advantage for quantum metrology, quantum communication and quantum computation. As is well known these applications have to face the difficulty that the irreversible interaction with an environment causes the superposition to rapidly evolve to a mixture of the component states in the case that the environment is not monitored. Here we show that by engineering the interaction with the environment there exists a large class of systems that can evolve irreversibly to a cat state. To be precise we show that it is possible to engineer an irreversible process so that the steady state is close to a pure Schr\"odinger's cat state by using double well systems and an environment comprising two-photon (or phonon) absorbers. We also show that it should be possible to prolong the lifetime of a Schr\"odinger's cat state exposed to the destructive effects of a conventional single-photon decohering environment. Our protocol should make it easier to prepare and maintain Schr\"odinger cat states which would be useful in applications of quantum metrology and information processing as well as being of interest to those probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary informatio
    • …
    corecore