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In this paper we propose a control strategy based on a classical guidance law and consider its use for an
example system: a Josephson charge qubit. We demonstrate how the guidance law can be used to attain a
desired qubit state using the standard qubit control fields.
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I. INTRODUCTION

The practical operation of devices for quantum informa-
tion processing is dependent upon the ability to control the
behavior of the component qubits via external classical con-
trol fields. As in classical devices, the control/bias fields al-
low the operator to define the dynamical characteristics of
the system. Bias fields contain noise that will couple into the
device and can ultimately limit the coherent evolution of a
quantum information processing system. In classical sys-
tems, a feedback control loop is often used to reduce the
effect of such environmental noise or other unforseen pertur-
bations on the evolution of the system. The control loop
compares the desired behavior with the actual behavior of
the system and aims to minimize the error between the two.
The problem for quantum control is that a feedback loop
requires some form of measurement to be made, and this
measurement will often adversely affect the coherence of the
quantum evolution. Several groups have suggested methods
to overcome this problem, using techniques developed
(mainly in quantum optics) to describe “weak” measure-
ments. These measurements can be used to obtain informa-
tion about a quantum system over a period of time while
minimizing the adverse effects of the measurement interac-
tion (see Ref. 1 for a recent review and a description of the
relationship between classical control and quantum control).
Closed-loop techniques fall into two main categories: Mar-
kovian feedback2–4 and Bayesian(or optimal) feedback.1,5,6

The first method uses the results of measurements to directly
alter the external control fields applied to the system. The
second builds an estimate of the system state over a number
of measurements. Although they were developed in quantum
optics, these techniques and related analysis have recently
been applied to the control of solid-state qubits.7,8

This paper deals with an associated problem, that of gen-
eralizing the techniques of classical guidance(see, for ex-
ample, Ref. 9) to the operation and manipulation of qubits.
The main conceptual difference between guidance and con-
trol is one of timeliness. In control systems, the desired state
of the system(classical or quantum) may be static or change
with time, but there is always an error between the actual
state of the system and the desired state. A control is applied
to remove this error signal. In guidance systems, the evolu-
tion of the system is not as important as the final state. The
controls are applied throughout the evolution to ensure that

the system reaches the desired state at the desired time. In
Ref. 10 Boutenet al. have addressed this problem implicitly,
by using dynamical programming to solve an optimal control
problem by minimizing the controls(which define a “cost”
function) applied over the time availablestmaxd. Experience
with classical guidance techniques shows that, while such
algorithms may give a minimum cost solution, optimal con-
trol guidance can be difficult to implement and simpler guid-
ance laws often provide sufficient accuracy with significantly
simpler guidance-control systems.9 The most commonly
used guidance law is referred to as proportional navigation,
which is used in a wide variety of aerospace guidance sys-
tems (autopilots, guided missiles, etc.). Several variants of
proportional navigation exist, but—in its most general
form—it can be written as9

ac = N8
sZEMd

tgo
2 ,

whereac is the control(acceleration command) that should
be applied to the system,N8 is a constant(called the “navi-
gation constant”) which determines the strength of the com-
mands,tgo is the time to go until the objectivestmaxù tgo

ù0d, and ZEM is the zero effort miss(that is, the distance
between the desired state—the intercept point—and the pre-
dicted state if no more controls are applied). In classical
guidance, an intercept is assured as long asN8.2 and the
accelerations commanded are achievable. In practice,N8 is
normally in the rangeN8=4→6, so that the controls imme-
diately prior to intercept are minimized.

Proportional navigation guidance is not optimal in the
sense of minimizing the controls applied, but is generally
easier to implement in a practical control system and the
controls that need to be applied to the system tend to have a
lower bandwidth than those generated by more sophisticated
algorithms. In this paper, we will generalize this classical
guidance law to the problem of controlling a solid-state qu-
bit. We will show some examples of the behavior predicted
for an (open-loop) proportional guidance law applied to a
Josephson charge qubit(e.g., Refs. 11 and 12). (Open-loop
control, i.e., without feedback, has been studied in the con-
text of atomic and quantum optics but not in the same form
as that presented here13). In particular, we consider the ro-
bustness of the guidance law to noise in the bias fields and
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the introduction of a first-order time delay(low pass filter)
into the control system, to investigate the effect of restricting
the bandwidth of the control signal. Consideration is also
given to the introduction of a simple measurement interac-
tion and feedback control loop.

II. JOSEPHSON CHARGE QUBIT

The qubit studied in this paper is a commonly used(ide-
alized) model for a standard experimental configuration. It
consists of a superconducting island(a Cooper pair box)
coupled to an external circuit via two parallel Josephson
junctions11,12 (see Fig. 1). The qubit has two main control
fields: a voltage biassVxd to control the energy of the charge
states and a magnetic fluxsFxd to control the tunneling of
electron pairs between the box and the external circuit. The
two parallel Josephson junctions form a current loop and
applying a magnetic field through this loop acts to modulate
the tunneling rate onto and off the Cooper pair box.(In this
paper, we assume that the two Josephson junctions are iden-
tical for simplicity. In practice, there will be small variations
in the tunneling rates for each junction in any experimental
system and it might be necessary to characterize these differ-
ences in a real system.) The effect of modulating the effec-
tive tunneling frequency on the qubit energy levels is shown
in Fig. 1(b). We shall use circuit parameter values based on

the experimental values given in Refs. 11 and 12 to ensure
that the circuit parameters are realizable. In most experi-
ments that have been reported using such systems(as well as
in other superconducting qubit experiments based on persis-
tent current devices),15 excited states are generated in the
qubit by applying an additional field, a time-dependent mi-
crowave drive field. In this paper, we do not use an addi-
tional (external) microwave drive which reduces the com-
plexity of the control system. This point it discussed in more
detail below.

The Hamiltonian for the(two-state) qubit can be written
in the charge basis representation as11,12

H0 =1
CVx

2

2
−

"n

2
cosSpFx

F0
D

−
"n

2
cosSpFx

F0
D s2e− CVxd2

2C
2 , s1d

where the basis states are zero excess pairssu0ld and one
excess pairsu1ld on the Cooper pair box,C is the net capaci-
tance of the island/box(in this case, we takeC=6310−16 F),
andn is the tunneling(angular) frequency of the Josephson
junction. The maximum Josephson tunneling frequency is
taken to ben /2p.12.9 GHz, although the effective Joseph-
son frequency at the nominal bias pointFx=F0/4 is ap-
proximately 9.1 GHz(see below), in line with the parameters
given in Ref. 12, whereF0=h/2e=2310−15 Wb is the su-
perconducting flux quantum. For the purposes of this paper,
we take the charge basis to be the computational basis for the
qubit. The energy eigenstates are functions of the bias fields.
Although we we will consider transitions between energy
eigenstates under the action of the guidance/control, this is
not necessary. As discussed below, we use the ground state as
the initial state for convenience, since it is assumed that the
system will relax to this state after some period of time,
under the action of whatever dissipation processes are
present in the system.

This Hamiltonian(or any other 232 Hermitian matrix)
may be decomposed into four components, which corre-
spond to a constant multiplied by the identity matrixsId or
one of the three Pauli matrices

sx = S0 1

1 0
D, sy = S0 − i

i 0
D ,

sz = S1 0

0 − 1
D

We write the bias voltage asVx=e/C+DVx, and then decom-
pose the Hamiltonian as

H0 = HII + Hxsx + Hysy + Hzsz

=SCsDVxd2

2
+

e2

2C
DI + esDVxdsz −

"n

2
cosSpFx

F0
Dsx.

s2d

From this decomposition, it is easy see that there is nosy
term in the basic Hamiltonian. This would be the term that
would normally be responsible for exciting the qubit into the

FIG. 1. (Color online) (a) Schematic of qubit circuit, showing
capacitancesC1+C2=C; and (b) energy levels for qubit as a func-
tion of Vx, using parameters given in the text and showing energies
for nominal bias pointFx0

=0.25F0 (solid lines) and for extremes of
the control modulation fieldFx0

=s0.25±0.05dF0 (dashed lines).
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excited state and has been the most common control cou-
pling to be studied in quantum optics.4,6,10,16To generate asy
term, it is necessary to apply a time-dependent field, sincesx
and sz do not commute:fsz,sxg=2isy. Normally, in quan-
tum optics, a laser is used to pump a qubit into an excited
state, or in solid-state experiments(such as those described
in Refs. 11 and 12) an external microwave source is used. In
an experimental system, the underlying Hamiltonian may not
be exactly what is predicted by the idealized model used
here, but a number of techniques have been proposed to al-
low the deviations to be characterized.14 The use of an ex-
ternal microwave source in solid state is not ideal for large-
scale systems because of potential problems in isolating
qubits from drives applied to neighboring devices. Because
of this, we restrict ourselves to controls that arise from time-
dependent bias fieldsDVx andFx and consider the effect of
limiting the bandwidth of these fields in a later section.

The general representation for a qubit state is

ucl = cosSu

2
Du0l + sinSu

2
Deifu1l s3d

whereuP f0,pg andfP f0,2pg, which can be written as a
(pure state) density matrixr= uclkcu

r =1 cos2Su

2
D cosSu

2
DsinSu

2
De−if

cosSu

2
DsinSu

2
Deif sin2Su

2
D 2 . s4d

However, the most convenient representation for the pur-
poses of this paper is the Bloch sphere representation,17

where the two anglesu and f represent angles on a unit
sphere, defined in a three-dimensional space by

1X

Y

Z
2 = 1sin u cosf

sin u sin f

cosu
2 = 1 r01 + r10

ir01 − ir10

r00 − r11
2 . s5d

The different components(sx, sy, and sz) present in the
Hamiltonian represent rotations in this three-dimensional
Bloch space(about theX, Y, andZ axes, respectively). The
fact that there is nosy term in the basic Hamiltonian is not a
problem, because it is possible to reach any point on the
Bloch sphere from any other by successive rotations about
any two (nonparallel) axes. The guidance algorithm simply
governs the size of the rotations that are to be applied to
achieve the objective.

III. PROPORTIONAL GUIDANCE

The classical proportional navigation algorithm predicts
the expected miss distance if no control is applied[the zero
effort miss ZEM], a quantum analog for the qubit can be
developed in a similar manner. The evolution in the absence
of controls is described by the basic Hamiltonian given in
Eq. (2) and the time evolution of the wave function and(pure
state) density matrix is governed by a unitary evolution op-
erator

Ûstd = expS−
iH0t

"
D .

The main difference between proportional navigation on a
sphere and proportional navigation in three Euclidean dimen-
sions is that the rotations generated by this unitary matrix
and the rotations required to move the estimated final state
onto the desired state do not commute. The rotation required
at the end point will not produce the same effect if it is
applied earlier in the trajectory. Because of this, we need to
retrodict where the desired state should have been at the
earlier time,18 if it is to end up at the desired state under the
free evolution given byH0. The ZEM in this case is the two
angles( uZEM and fZEM) which separate the current esti-
mated state(on the Bloch sphere) from the point where the
desired state would have to be at the current time. So, we
calculate

rdstgod = Û†stgodrdÛstgod=expS iH0tgo

"
Drd expS−

iH0tgo

"
D ,

s6d

whererd is the desired final state(or “target state”). From
this density matrix, we can calculate the two anglesudstgod
and fdstgod which define the retrodicted state. The ZEM
angles are then given by

uZEM = udstgod − u,

fZEM = fdstgod − f, s7d

whereu and f represent the current state(allowing for the
periodicity of the angles). The controls that need to be ap-
plied are

duc

dt
= N8

suZEMd
tgo

,

dfc

dt
= N8

sfZEMdsin u

tgo
, s8d

where the controls are angular velocities rather than accel-
erations because the Bloch equations are first-order differen-
tial equations,17 rather than second-order classical dynamics,
and the sinu term arises because the differences infZEM
near the poles of the Bloch sphere need to account for the
curvature of the sphere.

The controls can be equated to an equivalent Hamiltonian
by integrating over a small time intervalsdtd and using the
fact that asx Hamiltonian generates rotations about theX
axis and asz Hamiltonian generates rotations about theZ
axis. We find the Hamiltonian that rotates the Bloch vector
from its current position(as given byu and f) through
angles

duc = N8sdtd
suZEMd

tgo
,
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dfc = N8sdtd
sfZEMdsin u

tgo
. s9d

Making a linear approximation and solving for the Hamil-
tonian controls(Hxc

andHzc
), we obtain expressions

Hxc
= −

"sducd
2sdtdsin f

,

Hzc
= −

"sdfcd
2sdtd

. s10d

(In practice, although the expression forHxc
includes a

1/sin f term, removing the dependence uponf does not
affect the performance of the guidance to a large degree and
it dramatically reduces the bandwidth required for the con-
trol signal and makes the control system more resilient to
time delays.)

Applying these controls requires manipulating the bias
fields DVx andFx. Clearly there are limits to the size of the
controls that can be applied using these bias fields. The two
state approximation for the charge qubit is only valid as long
as changes in the bias voltage are smalluDVxu !2e/C, so we
impose constraints such thatuDVxc

u ,0.132e/C, where
DVx0

is the nominal voltage bias point and the voltage bias
control fluctuates about this pointDVx=DVx0

+DVxc
. Here the

capacitance that is used to apply the gate voltage, which in
turn controls the voltage applied across the qubit, is assumed
to be the same as the qubit island capacitance. This is not
necessary, changing the gate capacitance simply rescales the
voltage bias and the associated behavior under the action of
the guidance/control. As long as this capacitance is known,
the appropriate controls can be applied. For the magnetic
flux bias, we must ensure that any fluctuation around the
nominal bias pointFx0

is small enough so that the response
is approximately linear. SoFx=Fx0

+DFxc
, where Fx0

=0.25F0 anduDFxc
u ,0.05F0. Within this region, the cosine

tunneling term is approximately linear inDFxc
and we obtain

the following relations for the control fields:

DFxc
=

2Hxc

p"n sinSpFx0

F0
D ,

DVxc
=

Hzc

e
. s11d

Beyond the limits given, the control is assumed to have satu-
rated and any controls commanded are unachievable. This
limits the number of states that are reachable from a given
initial state, but as long as the desired state falls within the
reachable set for the initial state, this should not be a major
problem. For simplicity, we assume that the initial state cor-
responds to the ground state for the unperturbed Hamiltonian
H0 at the nominal bias point( DVx0

andFx0
=0.25F0). That

is, for simplicity, we assume that the qubit has relaxed into
the ground state via some(weak) dissipative process. Al-
though it would be possible to prepare a different initial state

by another process, such as some type of projective measure-
ment interaction, this is not considered here.

The guidance algorithm operates by integrating the evo-
lution of the qubit for a small timestep and applying controls
via DVx and Fx that are determined by finding the ZEM
angles from Eqs.(6) and(7), converting these angles into an
effective Hamiltonian using Eqs.(9) and (10), and finally
converting these Hamiltonian controls to bias values via Eq.
(11). Applying this procedure iteratively generates a time-
dependent bias signal that can then be applied to a qubit and
should provide the desired state at the desired timestgo=0d
as long as it is within the reachable set. Of course, since the
control is currently open loop, the actual state of the system
is unknown. The controls are generated from the knowledge
of where the state should be if it started in the ground state
and the controls had been correctly applied. A wide variety
of states may be prepared in this way and the controls have
several distinct advantages: they have a comparatively low
bandwidth, they operate via the standard bias fields without
an additional external drive, and(for states within the reach-
able set) the controls vanish astgo→0. This last point means
that the Hamiltonian is only weakly perturbed at the time
when the state is required. Although the algorithm is pre-
sented as an open-loop control technique, it provides a natu-
ral generalization to feedback(closed-loop) control, which is
discussed in a later section.

The difference between the desired state and the final
(possibly mixed) state can be quantified in a variety of stan-
dard ways. For the purposes of this paper, we use three com-
mon measures to characterize the performance of the guid-
ance algorithm. The first measure is the fidelity of the state,
introduced by Jozsa,19 which is one measure for how close
the final state is from the desired state. The fidelityF for two
density matricesr f andrd is given by20

F = Fsr f,rdd = uTrfÎÎrdr f
Îrdgu2,

which varies between zero and one(one being that the final
state matches the desired state exactly). The second measure
that we use in this paper is the trace distanceD21

D = Dsr f,rdd = 1
2Trfr f − rdg,

which also runs from zero to one(zero being identical states)
and measures the separation of the desired and final states.
The final measure is the distance from the surface of the
Bloch sphere, which is a measure of the purity(or, con-
versely, the mixedness) of the state, and can be written as4,16

p = 2 Trfr2g − 1,

with pure states givingp=1 and maximally mixed states giv-
ing p=0. The purity is most important for mixed states,
which are generated by the inclusion of stochastic terms such
as the measurement and feedback model discussed in a later
section.

IV. IDEAL OPEN-LOOP PERFORMANCE

Starting the qubit in its ground state, we can pick a par-
ticular target state and calculate the control signal required to
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generate this state at a later time using the technique de-
scribed above. We start by examining the performance of the
guidance algorithm when applied to an ideal system(with no
errors) and then examine the performance in the presence of
possible experimental errors.

Although any target state can be chosen, an obvious can-
didate is the qubit excited state(which is a function of the
nominal bias fields). As we have said, we assume that the
initial qubit state will be the ground state, the qubit having
relaxed into this state prior to the control being applied. Fig-
ure 2(a) shows the fidelity and trace distance achieved for a
range of DVx0

and for three different time periods
tmax=20,50,100 qubit cycles andN8=8. The purity is trivi-
ally one, since there is no stochastic evolution and the qubit
state is therefore pure. We see from the graphs that the ex-
cited state is easier to reach(high fidelity and low trace dis-
tance) from voltage values close to zero,DVx0

.0. The fidel-
ity is one for a wide range of bias voltages, even when the
time available is relatively short,tmax=20 cycles. The main
reason that the excited state is easier to reach near zero bias
is that the ground and excited states at zero bias are equal
(symmetric and antisymmetric) superpositions of the two ba-
sis states, and the main controls that are required are rota-

tions about theZ axis sszd, which are easier to achieve than
rotations about theX or Y axes. As the bias voltage is in-
creased, the ground and excited states shift toward the poles
of the Bloch sphere(and the qubit natural oscillation fre-
quency increases, reducing the time available), and more
controls are required from the magnetic bias field(which
generatessx terms). However, allowing more time for the
guidance(by extendingtmax) increases the ability to generate
an excited state, and fortmax=100 cycles the excited state is
within the reachable set for the whole of the rangeDVx0
shown in Fig. 2(a). Selecting the excited state as a target
state has one more practical advantage. Because the exited
state is stationary by definition, the production of an excited
state is quite robust. Slight variations in the control fields or
the time to go only generate small deviations from the ex-
cited state.

Figure 2(b) shows the performance of the guidance algo-
rithm for a target state that is not an energy eigenstate for any
values of the bias fields. We select an equal superposition
(u=p /2) but with a phasef=p /4. Here we see that the
reachable set(in terms ofDVx0

) is very much reduced com-
pared to the previous example. Even though the fidelity is
near one for a large range of bias voltages, the trace distance
is significantly greater than zero untiltmax.100 cycles and
DVx0

.0.232e/C. This is a result of the fact that the target
state is not an energy eigenstate and is therefore nonstation-
ary for all bias values. The control is therefore much more
sensitive to small variations.

Figure 3 shows an example of the evolution of the qubit
state under the proportional navigation guidance and the con-
trol fields that were applied. The evolution starts in the
ground state and rapidly spirals around the Bloch sphere un-
der the influence of the control, and gradually approaches the
excited state, spiraling in gradually as the controls applied
reduce in size. This is a good example of the benefit of this
approach, where the controls subside to zero as the system
approaches the desired state. This has distinct experimental
advantages because the bias fields will be static immediately
prior to tgo=0, which means that the Hamiltonian is not vary-
ing rapidly when the desired state is required. It is also no-
ticeable that both control fields contain a dominant frequency
component that matches the coherent oscillation frequency
of the qubit, indicating that a coherent drive at the transition
frequency is an important part of the control fields.

V. IMPERFECT BIAS FIELDS

In classical guidance systems the guidance-control feed-
back loop must be robust enough so that small perturbations
from noise or imperfections in the control system are
damped out and the system achieves its objective. The main
imperfections in classical guidance tend to come from uncer-
tainties in the physical parameters that define the transfer
function between the accelerations commanded by the guid-
ance law and the actual accelerations achieved by the con-
trols. In the qubit guidance case, this is more difficult be-
cause of the problems already mentioned in measuring the
error signal and the algorithm discussed so far is an open-
loop control system. Instead, we require that the fidelity and

FIG. 2. (Color online) Fidelity (F, solid lines) and trace distance
(D, dashed lines) achieved using guidance algorithm as a function
of the voltage bias value for different values oftmax:
20 qubit cycles(blue), 50 qubit cycles(green), and 100 qubit cycles
(red); (a) target state is the excited state at nominal bias voltage, and
(b) target state is an arbitrary state withu=p /2 andf=p /4.
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trace distance of the final state be weakly sensitive to small
variations in the experimental control parameters. For ex-
ample, the static(nominal) bias point may only be known to
a certain accuracy. We should require that the final state
approximately correct even if the static bias field is slightly
off or if a small amount of dynamical noise is present in the
fields. This is also of concern when the qubit is nonideal,
either the gate capacitance is only known to a finite accuracy
(so the scaling of the voltage biases is inaccurate) or the
Hamiltonian includes nonideal terms(possibly due to varia-
tions in the junctions coupling the island to the bulk mate-
rial). In these cases the controls applied will not necessarily
generate rotations about axes exactly aligned to the theX and
Z axes.

In practice, we find that—in common with the perfor-
mance of the guidance algorithm itself—the sensitivity to
noise is dependent on the target state. For static errors of the
order of DsDVx0

d.10−532e/C and DsFx0
d.10−4F0, the

performance of the algorithm for the example given in Fig.

2(a) (i.e., the target state is the excited state) is very good.
(The performance is also good for time-dependent errors, as
long as the cumulative errors during the control cycle are of
the same order as these tolerances.) Even for variations 1
order of magnitude larger than this, the performance is still
acceptable for the excited state over a comparatively wide
range of bias voltages, even if the reachable set is signifi-
cantly reduced. The accuracy of the final state for the target
state given in Fig. 2(b) would be significantly less with errors
of this size. The trace distance between the final state and
desired state is noticeably larger when bias errors are intro-
duced. For dynamical noise, we have also characterized the
performance of the algorithm in the presence of white noise
(i.e., uncorrelated with a uniform frequency distribution),
and the performance is similar to that for static bias errors as
long as the cumulative drift of the bias fields is less than the
limits given above.

VI. FIRST-ORDER TIME DELAYS

In addition to noise, an experimental system is also likely
to contain other imperfections. The main one considered here
is a constraint on the bandwidth allowed for the control sig-
nal. We use a simple method of restricting the bandwidth in
the control system by introducing a first-order time delay,
which acts as a low-pass filter and has a transfer function
(Laplace transform) given by22

Fssd =
1

1 + sTd
,

whereTd is the time delay constant. An example of this type
of delay is a low-passRC filter, which should be familiar
from standard electrical circuit analysis. The effect of this
filter is to exponentially damp rapid variations in the con-
trols, and in Fig. 4 we show the effect of such time delays on

FIG. 3. (Color online) (a) Example trajectory of state on the
Bloch sphere under proportional guidance with the excited state as
the target state andDVx0

=0.132e/C; and (b) control fieldsDVxc
(green) and DFxc

(blue) as a function of thetgo, for example, tra-
jectory in (a).

FIG. 4. (Color online) Fidelity (F, solid lines) and trace distance
(D, dashed lines) achieved using guidance algorithm as a function
of the voltage bias value for different time delays: zero time delay
(blue), 0.125 qubit cycle delay(green), and 0.25 qubit cycle delay
(red); target state is the excited state at nominal bias voltage and
tmax=50 cycles.
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the performance of the guidance algorithm. Time delays on
the order ofTd.0.1–0.2 cycles have little effect on the fi-
delity or trace distance of the final state for bias voltages
close to zero, but toward the far right(higher voltage biases),
the excited state becomes harder to reach, indicating that the
bandwidth of the control signal is larger at these extreme
values. By contrast, the effect of first-order time delays on
the case shown in Fig. 2(b) would actually be less pro-
nounced than that shown in Fig. 4 because the range of bias
values from which the target state is reachable is already
comparatively small.

VII. CLOSED-LOOP PERFORMANCE

In this section we consider the use of a simple measure-
ment and Markovian feedback mechanism to demonstrate
how the open-loop guidance approach could be adapted us-
ing existing quantum feedback techniques. As an example,
we choose a simple model for photon detection and(instan-
taneous) feedback. The model assumes that the qubit is
weakly coupled to a lossy reservoir and that projective mea-
surements are made on this reservoir. The results of the mea-
surement are then used to modify the controls applied to the
qubit. This model may not be entirely realistic, because of
problems with detecting single microwave photons and with
the large bandwidths required for a rapid feedback, but it
demonstrates the general approach. The basic idea is to apply
the guidance algorithm as described above and to modify the
control pulses, to allow for the reduced time to go, when a
photon is emitted and detected(detection is assumed to occur
with efficiencyh). Where photons are not detected, the qubit
will still be coupled to the lossy reservoir which will cause
an additional(nonunitary) perturbation on the otherwise co-
herent dynamics of the system and this is allowed for in the
modeling but not in the guidance-control algorithm.

The measurement mechanism is modeled using a quan-
tum trajectory approach,23,24 corresponding to an unraveling
of the Markovian Master equation for the qubit reduced den-
sity operator(after performing a partial trace over the lossy
reservoir). In this paper, we choose the quantum jumps
approach,23,24 which is suitable for modeling spontaneous
emission processes and is computationally efficient.25 Physi-
cally, this unraveling corresponds to the detection or absorp-
tion of spontaneously emitted photons on a time scale that is
significantly faster than any of the time scales present in the
quantum system. All unravelings reproduce the Master equa-
tion evolution when averaged, and the individual quantum
“trajectories” for the qubit are described by a model given in
Ref. 25.

The spontaneous emission process and subsequent detec-
tion of the photon introduces quantum jumps that project into
the instantaneous ground state of the qubit. The probability
of a spontaneous decay occurring during a small—but
finite—time intervaldt is gkĉ†ĉldt, where ĉ† and ĉ are the
raising and lowering operators for the(instantaneous) qubit
energy states, respectively. During each time interval where
no spontaneous decay occurs, a nonunitary evolution opera-
tor

V̂0sdtd = 1 −
i

"
Ĥqudt −

g

2
ĉ†ĉdt

is applied to the qubit state. When a decay occurs, an opera-
tor

V̂1sdtd = Îgdt ĉ

is applied to the qubit state. Each run of the simulation pro-
duces a subjective trajectory. For each trajectory, feedback
control is invoked if a photon is detected, with probabilityh,
so that the state evolution is conditional upon the detections
and then averaged over multiple realizations. The result is
averaged over many runs to provide an estimate of the mixed
state density matrix for the qubit, from which we can calcu-
late purity, fidelity, and trace distance.[Some noise is still
present in the average density matrix and the performance
measures, but this is relatively small and is due to the limited
number of runs(typically 500–1000) which is dictated by
computational constraints.]

Figure 5 shows an example of the fidelity, trace distance,
and purity for this simple closed-loop control system, corre-
sponding to one of the examples shown in Fig. 2(a) with the
damping rateg=0.05/qubit cycle. If the damping rate were
significantly smaller than this, the probability of a qubit un-

FIG. 5. (Color online) (a) Fidelity (F, solid lines) and trace
distance(D, dashed lines), and(b) purity (p, circles) achieved using
guidance algorithm as a function of the voltage bias value forg
=0.05/cycle andh=0.0 (no feedback, blue), h=0.5 (green), and
h=1.0 (red); target state is the excited state at nominal bias voltage
and tmax=50 cycles.
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dergoing a spontaneous decay during the period of control
would be negligible and the system would reduce to the
open-loop case already discussed. If the damping rate were
significantly higher than this, guidance control(open loop or
closed loop) would be impossible. For the case shown, the
probability of undergoing a transition during the control pe-
riod is significant. Without feedback(or very inefficient pho-
ton detectionh=0—blue lines) the fidelity and trace distance
are very low for small voltage bias values, and the purity is
fairly high. This is an indication that most of the qubits will
spontaneously emit photons and decay back to the ground
state. The main controls are applied near the start of the
control period[see Fig. 3(b)], which will tend to leave the
qubit near the ground state once a photon has been emitted.
In fact, the two properties are related, since the qubit is only
likely to emit a photon once the control has brought the
system close to the excited state in the first place. As the bias
voltages are increased, the excited state is harder to reach
(and therefore occurs later in the control cycle) and the emis-
sion probability consequently goes down. This is the cause of
the minimum in the purity for theh=0 case, where the two
effects balance out, so that the mid-range voltages are more
likely to be mixed between the ground and excited states.

Where the detection probability is nonzero(the green and
red curves in Fig. 5), feedback is allowed and the controls
can be modified when a photon is detected. In the case of
h=0.5 the purity is significantly reduced because there is a
chance of being near either state for most values of the bias
voltage, either through decay and detection, decay and non-
detection, and nondecay. However, as desired, the fidelity
increases as the detection probability increases, indicating
that the feedback is working correctly. Even so, even with
h=1, the closed loop performance does not reach the open-
loop, nondissipative performance. This is because the spon-
taneous emission reduces the effective time available for the
control, and multiple jumps are likely to occur for some bias
voltages. The average number of jumps is dependent onh

andDVx0
, but for h=1 andDVx0

.0, two or more jumps are
not uncommon.

VIII. DISCUSSION

In this paper we have presented a generalization of a clas-
sical guidance law to the problem of control of a qubit state
on the Bloch sphere. We have chosen the proportional navi-
gation guidance law because of its relative simplicity and its
resultant widespread use in classical guidance and control
systems. We have demonstrated that this guidance law can be
used to generate an arbitrary quantum state from the ground
state of a superconducting charge qubit using the standard
control fields(voltage and magnetic flux bias). The controls
produced by this guidance law are relatively robust to imper-
fections in the control fields and to first-order time delays,
implying that the control signals have a comparatively low
bandwidth. This should make it possible to control the state
of the qubit using signals fed through low-pass transmission
lines. We have also suggested a simple method to allow the
generalized guidance law to be included in a closed-loop
(Markovian) control system.

Although the ability to control the state of a single qubit
with a high degree of accuracy is important for a possible
quantum information processing device, the ability to control
the collective behavior of multiple qubits is also of great
interest. The ability to visualize the control of the qubit state
on the Bloch sphere is useful in understanding the guidance
mechanism, but it is not essential. Generalizing the guidance
algorithm to higher-dimensional settings(multiple qubits or
N-level systems) simply requires an understanding of the
group structure of the space and the ability to create appro-
priate control Hamiltonians from the generators of the
group.26 As long as the group generators(or the restricted set
of generators available to the control system) allow the state
space to be explored fully, then it should be possible to gen-
eralize the guidance algorithm described in this paper to
higher-dimensional systems.
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