34,378 research outputs found

    On the trace anomaly and the energy-momentum conservation of quantum fields at D=2 in classical curved backgrounds

    Full text link
    We study the conformal symmetry and the energy-momentum conservation of scalar field interacting with a curved background at D=2. We avoid to incorporate the metric determinant into the measure of the scalar field to explain the conformal anomaly and the consequent energy-momentum conservation. Contrarily, we split the scalar field in two other fields, in such a way that just one of them can be quantized. We show that the same usual geometric quantities of the anomaly are obtained, which are accompanied by terms containing the new field of the theory.Comment: 5 pages, no figure

    Time-dependent cosmological constant in the Jackiw-Teitelboim cosmology

    Get PDF
    We study the obtainment of a time-dependent cosmological constant at D=2 in a model based on the Jackiw-Teitelboim cosmology. We show that the cosmological term goes to zero asymptotically and can induce a nonsingular behavior at the origin.Comment: 4 pages, Revtex4, twocolum

    Hipparcos distances of Ophiuchus and Lupus cloud complexes

    Full text link
    We combine extinction maps from the Two Micron All Sky Survey (2MASS) with Hipparcos and Tycho parallaxes to obtain reliable and high-precision estimates of the distance to the Ophiuchus and Lupus dark complexes. Our analysis, based on a rigorous maximum-likelihood approach, shows that the rho-Ophiuchi cloud is located at (119 +/- 6) pc and the Lupus complex is located at (155 +/- 8) pc; in addition, we are able to put constraints on the thickness of the clouds and on their orientation on the sky (both these effects are not included in the error estimate quoted above). For Ophiuchus, we find some evidence that the streamers are closer to us than the core. The method applied in this paper is currently limited to nearby molecular clouds, but it will find many natural applications in the GAIA-era, when it will be possible to pin down the distance and three-dimensional structure of virtually every molecular cloud in the Galaxy.Comment: A&A in press - Corrected typo (Lupus distance) in the electronic abstrac

    Fibers in the NGC1333 proto-cluster

    Get PDF
    Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the Position-Position-Velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments.Comment: 25 pages, 17 figures; Accepted for publication in A&

    Gravitational collapse of the OMC-1 region

    Get PDF
    We have investigated the global dynamical state of the Integral Shaped Filament in the Orion A cloud using new N2_2H+^+ (1-0) large-scale, IRAM30m observations. Our analysis of its internal gas dynamics reveals the presence of accelerated motions towards the Orion Nebula Cluster, showing a characteristic blue-shifted profile centred at the position of the OMC-1 South region. The properties of these observed gas motions (profile, extension, and magnitude) are consistent with the expected accelerations for the gravitational collapse of the OMC-1 region and explain both the physical and kinematic structure of this cloud.Comment: 5 pages, 2 figures; Accepted by A&

    Statistical stability and limit laws for Rovella maps

    Full text link
    We consider the family of one-dimensional maps arising from the contracting Lorenz attractors studied by Rovella. Benedicks-Carleson techniques were used by Rovella to prove that there is a one-parameter family of maps whose derivatives along their critical orbits increase exponentially fast and the critical orbits have slow recurrent to the critical point. Metzger proved that these maps have a unique absolutely continuous ergodic invariant probability measure (SRB measure). Here we use the technique developed by Freitas and show that the tail set (the set of points which at a given time have not achieved either the exponential growth of derivative or the slow recurrence) decays exponentially fast as time passes. As a consequence, we obtain the continuous variation of the densities of the SRB measures and associated metric entropies with the parameter. Our main result also implies some statistical properties for these maps.Comment: 1 figur

    The Musca cloud: A 6 pc-long velocity-coherent, sonic filament

    Full text link
    Filaments play a central role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in 13^{13}CO and C18^{18}O (2--1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its \sim6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e., σNT/cs1\sigma_{NT}/c_s\lesssim1) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the ISM. The transonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from the turbulent regime over multi-parsec scales.Comment: 12 pages, 6 figures; Accepted for publication in A&
    corecore