16,973 research outputs found
Segregation in a fluidized binary granular mixture: Competition between buoyancy and geometric forces
Starting from the hydrodynamic equations of binary granular mixtures, we
derive an evolution equation for the relative velocity of the intruders, which
is shown to be coupled to the inertia of the smaller particles. The onset of
Brazil-nut segregation is explained as a competition between the buoyancy and
geometric forces: the Archimedean buoyancy force, a buoyancy force due to the
difference between the energies of two granular species, and two geometric
forces, one compressive and the other-one tensile in nature, due to the
size-difference. We show that inelastic dissipation strongly affects the phase
diagram of the Brazil nut phenomenon and our model is able to explain the
experimental results of Breu et al. (PRL, 2003, vol. 90, p. 01402).Comment: 5 pages, 2 figure
Coverage and Connectivity in Three-Dimensional Networks
Most wireless terrestrial networks are designed based on the assumption that
the nodes are deployed on a two-dimensional (2D) plane. However, this 2D
assumption is not valid in underwater, atmospheric, or space communications. In
fact, recent interest in underwater acoustic ad hoc and sensor networks hints
at the need to understand how to design networks in 3D. Unfortunately, the
design of 3D networks is surprisingly more difficult than the design of 2D
networks. For example, proofs of Kelvin's conjecture and Kepler's conjecture
required centuries of research to achieve breakthroughs, whereas their 2D
counterparts are trivial to solve. In this paper, we consider the coverage and
connectivity issues of 3D networks, where the goal is to find a node placement
strategy with 100% sensing coverage of a 3D space, while minimizing the number
of nodes required for surveillance. Our results indicate that the use of the
Voronoi tessellation of 3D space to create truncated octahedral cells results
in the best strategy. In this truncated octahedron placement strategy, the
transmission range must be at least 1.7889 times the sensing range in order to
maintain connectivity among nodes. If the transmission range is between 1.4142
and 1.7889 times the sensing range, then a hexagonal prism placement strategy
or a rhombic dodecahedron placement strategy should be used. Although the
required number of nodes in the hexagonal prism and the rhombic dodecahedron
placement strategies is the same, this number is 43.25% higher than the number
of nodes required by the truncated octahedron placement strategy. We verify by
simulation that our placement strategies indeed guarantee ubiquitous coverage.
We believe that our approach and our results presented in this paper could be
used for extending the processes of 2D network design to 3D networks.Comment: To appear in ACM Mobicom 200
Nonmodal energy growth and optimal perturbations in compressible plane Couette flow
Nonmodal transient growth studies and estimation of optimal perturbations
have been made for the compressible plane Couette flow with three-dimensional
disturbances. The maximum amplification of perturbation energy over time,
, is found to increase with increasing Reynolds number ,
but decreases with increasing Mach number . More specifically, the optimal
energy amplification (the supremum of over both the
streamwise and spanwise wavenumbers) is maximum in the incompressible limit and
decreases monotonically as increases. The corresponding optimal streamwise
wavenumber, , is non-zero at M=0, increases with increasing
, reaching a maximum for some value of and then decreases, eventually
becoming zero at high Mach numbers. While the pure streamwise vortices are the
optimal patterns at high Mach numbers, the modulated streamwise vortices are
the optimal patterns for low-to-moderate values of the Mach number. Unlike in
incompressible shear flows, the streamwise-independent modes in the present
flow do not follow the scaling law , the reasons
for which are shown to be tied to the dominance of some terms in the linear
stability operator. Based on a detailed nonmodal energy analysis, we show that
the transient energy growth occurs due to the transfer of energy from the mean
flow to perturbations via an inviscid {\it algebraic} instability. The decrease
of transient growth with increasing Mach number is also shown to be tied to the
decrease in the energy transferred from the mean flow () in
the same limit
SET based experiments for HTSC materials: II
The cuprates seem to exhibit statistics, dimensionality and phase transitions
in novel ways. The nature of excitations
[i.e. quasiparticle or collective], spin-charge separation, stripes [static
and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn,
Ni] and any other phenomenon in these materials must be consistently
understood. In this note we further discuss our original suggestion of using
Single Electron Tunneling Transistor
[SET] based experiments to understand the role of charge dynamics in these
systems. Assuming that SET operates as an efficient charge detection system we
can expect to understand the underlying physics of charge transport and charge
fluctuations in these materials for a range of doping. Experiments such as
these can be classed in a general sense as mesoscopic and nano characterization
of cuprates and related materials. In principle such experiments can show if
electron is fractionalized in cuprates as indicated by ARPES data. In contrast
to flux trapping experiments SET based experiments are more direct in providing
evidence about spin-charge separation. In addition a detailed picture of nano
charge dynamics in cuprates may be obtained.Comment: 10 pages revtex plus four figures; ICMAT 2001 Conference Symposium P:
P10-0
Fermi surface of an important nano-sized metastable phase: AlLi
Nanoscale particles embedded in a metallic matrix are of considerable
interest as a route towards identifying and tailoring material properties. We
present a detailed investigation of the electronic structure, and in particular
the Fermi surface, of a nanoscale phase ( AlLi) that has so far been
inaccessible with conventional techniques, despite playing a key role in
determining the favorable material properties of the alloy (Al\nobreakdash-9
at. %\nobreakdash-Li). The ordered precipitates only form within the
stabilizing Al matrix and do not exist in the bulk; here, we take advantage of
the strong positron affinity of Li to directly probe the Fermi surface of
AlLi. Through comparison with band structure calculations, we demonstrate
that the positron uniquely probes these precipitates, and present a 'tuned'
Fermi surface for this elusive phase
Quenching of light hadrons at RHIC in a collisional energy loss scenario
We evaluate the nuclear suppression factor, for light hadrons
by taking into account the collisional energy loss. We show that in the
measured domain of RHIC the elastic process is the dominant mechanism for
the partonic energy loss.Comment: 4 pages with 3 figures, Quark Matter 2008 Proceeding
Weak Kaon Production off the Nucleon
The weak kaon production off the nucleon induced by neutrinos is studied at
the low and intermediate energies of interest for some ongoing and future
neutrino oscillation experiments. This process is also potentially important
for the analysis of proton decay experiments. We develop a microscopical model
based on the SU(3) chiral Lagrangians. The basic parameters of the model are
fpi, the pion decay constant, Cabibbo's angle, the proton and neutron magnetic
moments and the axial vector coupling constants for the baryons octet, D and F,
that are obtained from the analysis of the semileptonic decays of neutron and
hyperons. The studied mechanisms are the main source of kaon production for
neutrino energies up to 1.2 to 1.5 GeV for the various channels and the cross
sections are large enough to be amenable to be measured by experiments such as
Minerva and T2K
- …