835 research outputs found
Theory of magnetic deflagration
Theory of magnetic deflagration (avalanches) in crystals of molecular magnets
has been developed. The phenomenon resembles the burning of a chemical
substance, with the Zeeman energy playing the role of the chemical energy.
Non-destructive reversible character of magnetic deflagration, as well as the
possibility to continuously tune the flammability of the crystal by changing
the magnetic field, makes molecular magnets an attractive toy system for a
detailed study of the burning process. Besides simplicity, new features, as
compared to the chemical burning, include possibility of quantum decay of
metastable spin states and strong temperature dependence of the heat capacity
and thermal conductivity. We obtain analytical and numerical solutions for
criteria of the ignition of magnetic deflagration, and compute the ignition
rate and the speed of the developed deflagration front.Comment: 17 Pages, 17 Figure caption
Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers.
BackgroundBiofuel use is one of many means of addressing global change caused by anthropogenic release of fossil fuel carbon dioxide into Earth's atmosphere. To make a meaningful reduction in fossil fuel use, bioethanol must be produced from the entire plant rather than only its starch or sugars. Enzymes produced by fungi constitute a significant percentage of the cost of bioethanol production from non-starch (i.e., lignocellulosic) components of energy crops and agricultural residues. We, and others, have reasoned that fungi that naturally deconstruct plant walls may provide the best enzymes for bioconversion of energy crops.ResultsPreviously, we have reported on the isolation of 106 fungi from decaying leaves of Miscanthus and sugarcane (Appl Environ Microbiol 77:5490-504, 2011). Here, we thoroughly analyze 30 of these fungi including those most often found on decaying leaves and stems of these plants, as well as four fungi chosen because they are well-studied for their plant cell wall deconstructing enzymes, for wood decay, or for genetic regulation of plant cell wall deconstruction. We extend our analysis to assess not only their ability over an 8-week period to bioconvert Miscanthus cell walls but also their ability to secrete total protein, to secrete enzymes with the activities of xylanases, exocellulases, endocellulases, and beta-glucosidases, and to remove specific parts of Miscanthus cell walls, that is, glucan, xylan, arabinan, and lignin.ConclusionThis study of fungi that bioconvert energy crops is significant because 30 fungi were studied, because the fungi were isolated from decaying energy grasses, because enzyme activity and removal of plant cell wall components were recorded in addition to biomass conversion, and because the study period was 2 months. Each of these factors make our study the most thorough to date, and we discovered fungi that are significantly superior on all counts to the most widely used, industrial bioconversion fungus, Trichoderma reesei. Many of the best fungi that we found are in taxonomic groups that have not been exploited for industrial bioconversion and the cultures are available from the Centraalbureau voor Schimmelcultures in Utrecht, Netherlands, for all to use
Quantum Magnetic Deflagration in Mn12 Acetate
We report controlled ignition of magnetization reversal avalanches by surface
acoustic waves in a single crystal of Mn12 acetate. Our data show that the
speed of the avalanche exhibits maxima on the magnetic field at the tunneling
resonances of Mn12. Combined with the evidence of magnetic deflagration in Mn12
acetate (Suzuki et al., cond-mat/0506569) this suggests a novel physical
phenomenon: deflagration assisted by quantum tunneling.Comment: 4 figure
Propagation of Avalanches in Mn-acetate: Magnetic Deflagration
Local time-resolved measurements of fast reversal of the magnetization of
single crystals of Mn12-acetate indicate that the magnetization avalanche
spreads as a narrow interface that propagates through the crystal at a constant
velocity that is roughly two orders of magnitude smaller than the speed of
sound. We argue that this phenomenon is closely analogous to the propagation of
a flame front (deflagration) through a flammable chemical substance.Comment: 5 pages, 5 figure
Rapid Bacterial and Fungal Successional Dynamics in First Year After Chaparral Wildfire
The rise in wildfire frequency and severity across the globe has increased interest in secondary succession. However, despite the role of soil microbial communities in controlling biogeochemical cycling and their role in the regeneration of post-fire vegetation, the lack of measurements immediately post-fire and at high temporal resolution has limited understanding of microbial secondary succession. To fill this knowledge gap, we sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days after a southern California wildfire in fire-adapted chaparral shrublands. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition with Illumina MiSeq sequencing of 16S and ITS2 amplicons. Fire severely reduced bacterial biomass by 47%, bacterial richness by 46%, fungal biomass by 86%, and fungal richness by 68%. The burned bacterial and fungal communities experienced rapid succession, with 5-6 compositional turnover periods. Analogous to plants, turnover was driven by fire-loving pyrophilous microbes, many of which have been previously found in forests worldwide and changed markedly in abundance over time. Fungal secondary succession was initiated by the Basidiomycete yeast Geminibasidium, which traded off against the filamentous Ascomycetes Pyronema, Aspergillus, and Penicillium. For bacteria, the Proteobacteria Massilia dominated all year, but the Firmicute Bacillus and Proteobacteria Noviherbaspirillum increased in abundance over time. Our high-resolution temporal sampling allowed us to capture post-fire microbial secondary successional dynamics and suggest that putative tradeoffs in thermotolerance, colonization, and competition among dominant pyrophilous microbes control microbial succession with possible implications for ecosystem function
Lift-Off Characteristics and Flame Base Structure of Coal Seeded Gas Jet Flames
An experimental study of the burner rim stability characteristics and the flame base structure of flames co-fired with pulverized coal and propane gas is presented. Lift-off and reattachment characteristics are examined as functions of propane concentration in the jet stream for lignite, bituminous and anthracite coals. The effects on flame base structure are studied in terms of temperature, product species concentration and radiation profiles. The addition of lignite and anthracite coals favours the lift-off transitions. Bituminous coal, on the other hand, makes the flame more stable. The peak values of temperature and concentrations of major combustion product species in the flame stabilization region strongly depend upon the rank of coal. Among the coals tested, bituminous coal produces the highest peak temperature and its flame emits maximum radiation from the stabilization region. Anthracite and lignite coals produce somewhat comparable stability characteristics and structure of the flame base. The effects of coal rank are explained by the differences in volatile matter, moisture and pyrolysis characteristics of coals.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Classical generalized constant coupling model for geometrically frustrated antiferromagnets
A generalized constant coupling approximation for classical geometrically
frustrated antiferromagnets is presented. Starting from a frustrated unit we
introduce the interactions with the surrounding units in terms of an internal
effective field which is fixed by a self consistency condition. Results for the
magnetic susceptibility and specific heat are compared with Monte Carlo data
for the classical Heisenberg model for the pyrochlore and kagome lattices. The
predictions for the susceptibility are found to be essentially exact, and the
corresponding predictions for the specific heat are found to be in very good
agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of
the pyrochlore specific heat correcte
Recommended from our members
Precipitation legacies amplify ecosystem nitrogen losses from nitric oxide emissions in a Pinyon–Juniper dryland
Climate change is increasing the variability of precipitation, altering the frequency of soil drying-wetting events and the distribution of seasonal precipitation. These changes in precipitation can alter nitrogen (N) cycling and stimulate nitric oxide (NO) emissions (an air pollutant at high concentrations), which may vary according to legacies of past precipitation and represent a pathway for ecosystem N loss. To identify whether precipitation legacies affect NO emissions, we excluded or added precipitation during the winter growing season in a Pinyon-Juniper dryland and measured in situ NO emissions following experimental wetting. We found that the legacy of both excluding and adding winter precipitation increased NO emissions early in the following summer; cumulative NO emissions from the winter precipitation exclusion plots (2750 ± 972 μg N-NO m-2 ) and winter water addition plots (2449 ± 408 μg N-NO m-2 ) were higher than control plots (1506 ± 397 μg N-NO m-2 ). The increase in NO emissions with previous precipitation exclusion was associated with inorganic N accumulation, while the increase in NO emissions with previous water addition was associated with an upward trend in microbial biomass. Precipitation legacies can accelerate soil NO emissions and may amplify ecosystem N loss in response to more variable precipitation
- …