118 research outputs found
Magnetic Soret effect: Application of the ferrofluid dynamics theory
The ferrofluid dynamics theory is applied to thermodiffusive problems in
magnetic fluids in the presence of magnetic fields. The analytical form for the
magnetic part of the chemical potential and the most general expression of the
mass flux are given. By employing these results to experiments, global Soret
coefficients in agreement with measurements are determined. Also an estimate
for a hitherto unknown transport coefficient is made.Comment: 7 pages, 2 figure
Magnetization of rotating ferrofluids: the effect of polydispersity
The influence of polydispersity on the magnetization is analyzed in a
nonequilibrium situation where a cylindrical ferrofluid column is enforced to
rotate with constant frequency like a rigid body in a homogeneous magnetic
field that is applied perpendicular to the cylinder axis. Then, the
magnetization and the internal magnetic field are not longer parallel to each
other and their directions differ from that of the applied magnetic field.
Experimental results on the transverse magnetization component perpendicular to
the applied field are compared and analyzed as functions of rotation frequency
and field strength with different polydisperse Debye models that take into
account the polydispersity in different ways and to a varying degree.Comment: 11 pages, 7 figures, to be published in Journal of Physics
Capillary-gravity wave resistance in ordinary and magnetic fluids
Wave resistance is the drag force associated to the emission of waves by a
moving disturbance at a fluid free surface. In the case of capillary-gravity
waves it undergoes a transition from zero to a finite value as the speed of the
disturbance is increased. For the first time an experiment is designed in order
to obtain the wave resistance as a function of speed. The effect of viscosity
is explored, and a magnetic fluid is used to extend the available range of
critical speeds. The threshold values are in good agreement with the proposed
theory. Contrary to the theoretical model, however, the measured wave
resistance reveals a non monotonic speed dependence after the threshold.Comment: 12 pages, 4 figures, 1 table, submitted to Physical Review Letter
Onset of Wave Drag due to Generation of Capillary-Gravity Waves by a Moving Object as a Critical Phenomenon
The onset of the {\em wave resistance}, via generation of capillary gravity
waves, of a small object moving with velocity , is investigated
experimentally. Due to the existence of a minimum phase velocity for
surface waves, the problem is similar to the generation of rotons in superfluid
helium near their minimum. In both cases waves or rotons are produced at
due to {\em Cherenkov radiation}. We find that the transition to the
wave drag state is continuous: in the vicinity of the bifurcation the wave
resistance force is proportional to for various fluids.Comment: 4 pages, 7 figure
Ferrofluids as thermal ratchets
Colloidal suspensions of ferromagnetic nano-particles, so-called ferrofluids,
are shown to be suitable systems to demonstrate and investigate thermal ratchet
behavior: By rectifying thermal fluctuations, angular momentum is transferred
to a resting ferrofluid from an oscillating magnetic field without net rotating
component. Via viscous coupling the noise driven rotation of the microscopic
ferromagnetic grains is transmitted to the carrier liquid to yield a
macroscopic torque. For a simple setup we analyze the rotation of the
ferrofluid theoretically and show that the results are compatible with the
outcome of a simple demonstration experiment.Comment: 4 pages, 3 figures, corrected version, improved figures, to be
published in Phys. Rev. Let
Evidence of random magnetic anisotropy in ferrihydrite nanoparticles based on analysis of statistical distributions
We show that the magnetic anisotropy energy of antiferromagnetic ferrihydrite
depends on the square root of the nanoparticles volume, using a method based on
the analysis of statistical distributions. The size distribution was obtained
by transmission electron microscopy, and the anisotropy energy distributions
were obtained from ac magnetic susceptibility and magnetic relaxation. The
square root dependence corresponds to random local anisotropy, whose average is
given by its variance, and can be understood in terms of the recently proposed
single phase homogeneous structure of ferrihydrite.Comment: 6 pages, 2 figure
Magnetization of ferrofluids with dipolar interactions - a Born--Mayer expansion
For ferrofluids that are described by a system of hard spheres interacting
via dipolar forces we evaluate the magnetization as a function of the internal
magnetic field with a Born--Mayer technique and an expansion in the dipolar
coupling strength. Two different approximations are presented for the
magnetization considering different contributions to a series expansion in
terms of the volume fraction of the particles and the dipolar coupling
strength.Comment: 19 pages, 11 figures submitted to PR
Theoretical study of the magnetization dynamics of non-dilute ferrofluids
The paper is devoted to the theoretical investigation of the magnetodipolar
interparticle interaction effect on remagnetization dynamics in moderately
concentrated ferrofluids. We consider a homogeneous (without particle
aggregates) ferrofluid consisting of identical spherical particles and employ a
rigid dipole model, where magnetic moment of a particle is fixed with respect
to the particle itself. In particular, for the magnetization relaxation after
the external field is instantly switched off, we show that the magnetodipolar
interaction leads to the increase of the initial magnetization relaxation time.
For the complex ac-susceptibility we find that the this interaction leads to an
overall increase of the imaginary susceptibility part and shifts the peak on
its frequency dependence towards lower frequencies. Comparing results obtained
with our analytical approach (second order virial expansion) to numerical
simulation data (Langevin dynamics method), we demonstrate that the employed
virial expansion approximation gives a good qualitative description of the
ferrofluid magnetization dynamics and provides a satisfactory quantitative
agreement with numerical simulations for the dc magnetization relaxation - up
to the particle volume fraction c ~ 10% and for the ac-susceptibility - up to c
~ 5 %.Comment: 12 pages, 6 figures, submitted to PR
Granular Solid Hydrodynamics
Granular elasticity, an elasticity theory useful for calculating static
stress distribution in granular media, is generalized to the dynamic case by
including the plastic contribution of the strain. A complete hydrodynamic
theory is derived based on the hypothesis that granular medium turns
transiently elastic when deformed. This theory includes both the true and the
granular temperatures, and employs a free energy expression that encapsulates a
full jamming phase diagram, in the space spanned by pressure, shear stress,
density and granular temperature. For the special case of stationary granular
temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity},
a state-of-the-art engineering model.Comment: 42 pages 3 fi
Rolling ferrofluid drop on the surface of a liquid
We report on the controlled transport of drops of magnetic liquid, which are
swimming on top of a non-magnetic liquid layer. A magnetic field which is
rotating in a vertical plane creates a torque on the drop. Due to surface
stresses within the immiscible liquid beneath, the drop is propelled forward.
We measure the drop speed for different field amplitudes, field frequencies and
drop volumes. Simplifying theoretical models describe the drop either as a
solid sphere with a Navier slip boundary condition, or as a liquid half-sphere.
An analytical expression for the drop speed is obtained which is free of any
fitting parameters and is well in accordance with the experimental
measurements. Possible microfluidic applications of the rolling drop are also
discussed
- …