40 research outputs found

    HFST—Framework for Compiling and Applying Morphologies

    Get PDF
    HFST–Helsinki Finite-State Technology ( hfst.sf.net ) is a framework for compiling and applying linguistic descriptions with finite-state methods. HFST currently connects some of the most important finite-state tools for creating morphologies and spellers into one open-source platform and supports extending and improving the descriptions with weights to accommodate the modeling of statistical information. HFST offers a path from language descriptions to efficient language applications in key environments and operating systems. HFST also provides an opportunity to exchange transducers between different software providers in order to get the best out of each finite-state library.Peer reviewe

    Global warming and malaria: knowing the horse before hitching the cart

    Get PDF
    Speculations on the potential impact of climate change on human health frequently focus on malaria. Predictions are common that in the coming decades, tens – even hundreds – of millions more cases will occur in regions where the disease is already present, and that transmission will extend to higher latitudes and altitudes. Such predictions, sometimes supported by simple models, are persuasive because they are intuitive, but they sidestep factors that are key to the transmission and epidemiology of the disease: the ecology and behaviour of both humans and vectors, and the immunity of the human population. A holistic view of the natural history of the disease, in the context of these factors and in the precise setting where it is transmitted, is the only valid starting point for assessing the likely significance of future changes in climate

    Species-Area Relationships Are Controlled by Species Traits

    Get PDF
    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope  = 0.82), narrow dietary niche (slope  = 0.59), low abundance (slope  = 0.52), and low reproductive potential (slope  = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions

    Assessing the social vulnerability to malaria in Rwanda

    Full text link
    corecore