771 research outputs found

    Transport and degradation of phytoplankton in permeable sediment

    No full text
    In flume and field experiments we demonstrate that interfacial water flows, generated when bottom currents interact with sea bed topography, provide a fast and efficient pathway for the transport of suspended phytoplankton into subsurface layers of permeable sandy sediments. The advective transport, associated with small mounds and ripples as commonly found on shelf sediments, increased penetration depth of unicellular algae (Dunaliella spec.) into sandy sediment (permeability k = 4 × 10−11 m2) up to a factor of 7 and flux up to a factor of 9 relative to a smooth control sediment. The pore water flow field produced a distinct distribution pattern of particulate organic matter in the sediment with subsurface concentration maxima and zones depleted of algae. Flux chamber simulations of advective transport of algae into sands of different grain sizes revealed increasing fluxes, algal penetration depths, and degradation rates with increasing permeability of the sediment. Two experiments conducted in intertidal sand flats confirmed the importance of the advective interfacial transport of phytoplankton for natural settings, showing permeability‐dependent penetration of planktonic algae into embedded sand cores of different grain sizes. The significance of our results is discussed with respect to particulate organic matter flux and mineralization in shelf sands, and we suggest the concept of a decomposition layer

    Impact of flow on oxygen dynamics in photosynthetically active sediments

    Get PDF
    To assess the influence of boundary flow on interfacial oxygen flux in sediments inhabited by benthic phototrophs, we measured the oxygen distribution and the photosynthetic activity in an intertidal sandy core at flow velocities of 0, 2, 5, 10, and 15 cm s(-1) in a laboratory flume. The impact of flow was large; the effects were reversible and most pronounced in the velocity range of 0 to 5 cm s(-1) With increasing flow velocity, both the maximum oxygen concentration in the sediment and the oxygen penetration decreased significantly The depth of the oxygen concentration maximum was shifted over 1 mm closer towards the sediment surface at the highest flow and the diffusive boundary layer was gradually compressed to a width of 0.2 +/- 0.1 mm. The width of the photosynthetically active sediment layer decreased from 3.2 +/- 0.6 mm in stagnant water to 1.4 +/- 0.3 mm under flow, resulting in an overall reduction of gross photosynthesis. This is explained by a migration of the benthic algae (dominated by pennate diatoms) into deeper sediment layers under flow to avoid resuspension into the water, and thereby impairing photosynthesis. Despite the decrease in photosynthesis, the flux of oxygen into the water column did not change significantly, suggesting that advective processes enhanced the release of oxygen from the sediment under flow conditions. We concluded that boundary layer flow is an important factor controlling photosynthesis and oxygen release in shallow water sediments

    Impact of boundary layer flow velocity on oxygen utilisation in coastal sediments

    No full text
    Small pressure gradients generated by boundary flow-topography interactions cause advective pore water flows in permeable sediments. Advective pore water exchange enhances the flux of solutes between the sediment and the overlying water, thus generating conditions for an increased utilisation of oxygen. We compared a less permeable (k = 5 x 10(-12) m(2)) with a permeable sediment (k = 5 x 10(-11) m(2)) typical for coastal and shelf sediments. Total oxygen utilisation (TOU) in incubated sediment cores was measured in 10 laboratory experiments using recirculating flow tanks (33 runs). TOU was a function of now velocity in permeable sediment where advective pore water now occurred. TOU increased with the increasing volume of sediment flushed with oxygenated water. We found that TOU increased by 91 +/- 23% in coarse sand when now increased from 3 to 14 cm s(-1) (38 mounds m(-2) height 10 to 30 mm, now measured 8 cm above the sediment). Addition of fresh algal material caused a stronger stimulation of TOU in the coarse sand than in the fine sand (4 additional flume runs). After the addition, intensive oxygen consumption reduced the oxygen penetration depth in the advectively flushed zone of the coarse sediment. However, counteracting this process, advective flow maintained an oxic sediment volume still larger than that in the less permeable sediment. Flow-enhanced oxygen utilisation is potentially effective in permeable beds of coastal and shelf regions, in contrast to the situation in cohesive sediments limited by predominantly diffusive oxygen supply

    Neurocognitive Development of Risk Aversion from Early Childhood to Adulthood

    Get PDF
    Human adults tend to avoid risk. In behavioral economic studies, risk aversion is manifest as a preference for sure gains over uncertain gains. However, children tend to be less averse to risk than adults. Given that many of the brain regions supporting decision-making under risk do not reach maturity until late adolescence or beyond it is possible that mature risk-averse behavior may emerge from the development of decision-making circuitry. To explore this hypothesis, we tested 5- to 8-year-old children, 14- to 16-year-old adolescents, and young adults in a risky-decision task during functional magnetic resonance imaging (fMRI) data acquisition. To our knowledge, this is the youngest sample of children in an fMRI decision-making task. We found a number of decision-related brain regions to increase in activation with age during decision-making, including areas associated with contextual memory retrieval and the incorporation of prior outcomes into the current decision-making strategy, e.g., insula, hippocampus, and amygdala. Further, children who were more risk-averse showed increased activation during decision-making in ventromedial prefrontal cortex and ventral striatum. Our findings indicate that the emergence of adult levels of risk aversion co-occurs with the recruitment of regions supporting decision-making under risk, including the integration of prior outcomes into current decision-making behavior. This pattern of results suggests that individual differences in the development of risk aversion may reflect differences in the maturation of these neural processes

    Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

    Full text link
    Tunneling spectroscopy of a Nb coupled carbon nanotube quantum dot reveals the formation of pairs of Andreev bound states (ABS) within the superconducting gap. A weak replica of the lower ABS is found, which is generated by quasi-particle tunnelling from the ABS to the Al tunnel probe. An inversion of the ABS-dispersion is observed at elevated temperatures, which signals the thermal occupation of the upper ABS. Our experimental findings are well supported by model calculations based on the superconducting Anderson model.Comment: 6 pages, 7 figure

    Sulfide assimilation by ectosymbionts of the sessile ciliate, Zoothamnium niveum

    Get PDF
    We investigated the constraints on sulfide uptake by bacterial ectosymbionts on the marine peritrich ciliate Zoothamnium niveum by a combination of experimental and numerical methods. Protists with symbionts were collected on large blocks of mangrove-peat. The blocks were placed in a flow cell with flow adjusted to in situ velocity. The water motion around the colonies was then characterized by particle tracking velocimetry. This shows that the feather-shaped colony of Z. niveum generates a unidirectional flow of seawater through the colony with no recirculation. The source of the feeding current was the free-flowing water although the size of the colonies suggests that they live partly submerged in the diffusive boundary layer. We showed that the filtered volume allows Z. niveum to assimilate sufficient sulfide to sustain the symbiosis at a few micromoles per liter in ambient concentration. Numerical modeling shows that sulfide oxidizing bacteria on the surfaces of Z. niveum can sustain 100-times higher sulfide uptake than bacteria on flat surfaces, such as microbial mats. The study demonstrates that the filter feeding zooids of Z. niveum are preadapted to be prime habitats for sulfide oxidizing bacteria due to Z. niveum’s habitat preference and due to the feeding current. Z. niveum is capable of exploiting low concentrations of sulfide in near norm-oxic seawater. This links its otherwise dissimilar habitats and makes it functionally similar to invertebrates with thiotrophic symbionts in filtering organs

    Discharge of dissolved black carbon from a fire-affected intertidal system

    Get PDF
    We report substantial tidal fluxes of dissolved black carbon (DBC) in a fire‐affected marsh in the northern Gulf of Mexico. DBC was molecularly determined as benzenepolycarboxylic acids in a tidal creek, adjacent rivers, and the coastal ocean. Supported by stable carbon isotope and in situ fluorescence measurements, three sources of dissolved organic carbon (DOC) were identified that mixed conservatively in the coastal system: groundwater from salt marshes, river water, and seawater. Groundwater was the main source of DBC to the creek. The highest DBC concentrations of up to 41 ”mol C L−1 (7.2% of DOC) were found in the creek at low tide, compared with < 18 ”mol C L−1 in all other samples. Over the studied tidal cycle, we determined a runoff (load per drainage area) of 3700 moles DBC (44 kg C) km−2 of salt marsh. This is high compared with the Apalachicola River, where the annual DBC runoff is on the order of 104 mol (120 kg C) km−2 yr−1. In the marsh, it would require ∌ 20 tidal cycles similar to the one that we studied to remove all black carbon produced during one fire event. Because a spring tide was studied, our estimate is as an upper limit. DBC is ubiquitous in the global ocean, and dissolution and subsequent lateral transport appear to be important removal mechanisms for soil black carbon. Our study, which provides a snapshot in time and space, demonstrates that tidal fluxes may be primary carriers of DBC, and therefore tidal pumping and groundwater discharge cannot be ignored in assessing the continental runoff of DBC

    Advective particle transport into permeable sediments - evidence from experiments in an intertidal sandflat

    No full text
    Advective transport of artificial and natural particles into permeable sediments was demonstrated in situ by field experiments in an intertidal Wadden Sea sandflat. Using dyed sediment, advective interfacial solute exchange was shown to reach down at least 1.5 cm below surface. Particle depth distributions depended on sediment permeability and particle size. Sandy sediments were found to efficiently trap particulate material. At the beginning of the local phytoplankton spring bloom, an average m2 of coarse‐grained sediment received 850‐mg organic carbon per day by filtration of 14 liters of overlying water per hour. We discuss the relative importance of different transport mechanisms, and data from parallel studies on natural sediments at the same site are interpreted in close correlation to the results of the in situ experiment
    • 

    corecore