1,090 research outputs found
Sensitivity Analysis of the MGMT-STP27 Model and Impact of Genetic and Epigenetic Context to Predict the MGMT Methylation Status in Gliomas and Other Tumors.
The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Our model MGMT-STP27 allows prediction of the methylation status of the MGMT promoter using data from the Illumina's Human Methylation BeadChips (HM-27K and HM-450K) that is publically available for many cancer data sets. Here, we investigate the impact of the context of genetic and epigenetic alterations and tumor type on the classification and report on technical aspects, such as robustness of cutoff definition and preprocessing of the data. The association between gene copy number variation, predicted MGMT methylation, and MGMT expression revealed a gene dosage effect on MGMT expression in lower grade glioma (World Health Organization grade II/III) that in contrast to glioblastoma usually carry two copies of chromosome 10 on which MGMT resides (10q26.3). This implies some MGMT expression, potentially conferring residual repair function blunting the therapeutic effect of alkylating agents. A sensitivity analyses corroborated the performance of the original cutoff for various optimization criteria and for most data preprocessing methods. Finally, we propose an R package mgmtstp27 that allows prediction of the methylation status of the MGMT promoter and calculation of appropriate confidence and/or prediction intervals. Overall, MGMT-STP27 is a robust model for MGMT classification that is independent of tumor type and is adapted for single sample prediction
WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1.
Glioblastoma is the most aggressive primary brain tumor in adults and due to the invasive nature cannot be completely removed. The WNT inhibitory factor 1 (WIF1), a secreted inhibitor of WNTs, is systematically downregulated in glioblastoma and acts as strong tumor suppressor. The aim of this study was the dissection of WIF1-associated tumor-suppressing effects mediated by canonical and non-canonical WNT signaling. We found that WIF1 besides inhibiting the canonical WNT pathway selectively downregulates the WNT/calcium pathway associated with significant reduction of p38-MAPK (p38-mitogen-activated protein kinase) phosphorylation. Knockdown of WNT5A, the only WNT ligand overexpressed in glioblastoma, phenocopied this inhibitory effect. WIF1 expression inhibited cell migration in vitro and in an orthotopic brain tumor model, in accordance with the known regulatory function of the WNT/Ca(2+) pathway on migration and invasion. In search of a mediator for this function differential gene expression profiles of WIF1-expressing cells were performed. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA and key positive regulator of invasion, emerged as the top downregulated gene. Indeed, knockdown of MALAT1 reduced migration in glioblastoma cells, without effect on proliferation. Hence, loss of WIF1 enhances the migratory potential of glioblastoma through WNT5A that activates the WNT/Ca(2+) pathway and MALAT1. These data suggest the involvement of canonical and non-canonical WNT pathways in glioblastoma promoting key features associated with this deadly disease, proliferation on one hand and invasion on the other. Successful targeting will require a dual strategy affecting both canonical and non-canonical WNT pathways
BET inhibitors repress expression of interferon-stimulated genes and synergize with HDAC inhibitors in glioblastoma.
The development of rational combination therapies is key to overcome inherent treatment resistance of glioblastoma (GBM). We aim at identifying new druggable targets by disturbing GBM cells with inhibitors of bromodomain and extra-terminal motif (BET) proteins to reveal cancer-relevant vulnerabilities that may sensitize to a second drug. BET proteins are epigenetic modulators and have been associated with proto-oncogene overexpression in cancer.
A GBM-derived sphere-line was treated with the BET inhibitor (BETi) JQ1 over a time-course of 48 hours, followed by RNA-sequencing. Four chromatin marks were investigated by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Signatures of interest were functionally validated in vitro and in orthotopic xenografts. Combination therapies were evaluated for synergistic effects.
Cancer-relevant pathways significantly modulated by JQ1 comprised interferon alpha (IFN-α) response genes and response signatures to histone deacetylase inhibitors (HDACi). The IFN-signature was reminiscent of a GBM-derived IFN-signature comprising CD274 (PD-L1). Functional pathway analysis suggested that JQ1 was acting directly on the transcriptional level of IFN-response genes and not via the canonical JAK/STAT pathway. This was in line with JQ1 modulated expression and BRD4 and Pol II occupancy at IFN-signature genes, supporting a direct mechanistic interaction. Finally, we showed that combining HDACi with JQ1 acts synergistically in reducing cell viability of GS-lines.
Our approach identified BETi-induced vulnerabilities in cancer-relevant pathways, potentially amenable to synergistic combinatorial therapy, such as combination with HDACi. The direct inhibitory effect of BETi on IFN-responsive genes in GBM cells, including CD274, indicates modulation of the tumor immune landscape and warrants further studies
Senescence Is the Main Trait Induced by Temozolomide in Glioblastoma Cells.
First-line drug in the treatment of glioblastoma, the most severe brain cancer, is temozolomide (TMZ), a DNA-methylating agent that induces the critical damage O <sup>6</sup> -methylguanine (O <sup>6</sup> MeG). This lesion is cytotoxic through the generation of mismatch repair-mediated DNA double-strand breaks (DSBs), which trigger apoptotic pathways. Previously, we showed that O <sup>6</sup> MeG also induces cellular senescence (CSEN). Here, we show that TMZ-induced CSEN is a late response which has similar kinetics to apoptosis, but at a fourfold higher level. CSEN cells show a high amount of DSBs, which are located outside of telomeres, a high level of ROS and oxidized DNA damage (8-oxo-guanine), and sustained activation of the DNA damage response and histone methylation. Despite the presence of DSBs, CSEN cells are capable of repairing radiation-induced DSBs. Glioblastoma cells that acquired resistance to TMZ became simultaneously resistant to TMZ-induced CSEN. Using a Tet-On glioblastoma cell system, we show that upregulation of MGMT immediately after TMZ completely abrogated apoptosis and CSEN, while induction of MGMT long-term (&gt;72 h) after TMZ did not reduce apoptosis and CSEN. Furthermore, upregulation of MGMT in the senescent cell population had no impact on the survival of senescent cells, indicating that O <sup>6</sup> MeG is required for induction, but not for maintenance of the senescent state. We further show that, in recurrent GBM specimens, a significantly higher level of DSBs and CSEN-associated histone H3K27me3 was observed than in the corresponding primary tumors. Overall, the data indicate that CSEN is a key node induced in GBM following chemotherapy
Effect of rofecoxib on platelet aggregation and blood loss in gynaecological and breast surgery compared with diclofenac
Background. Non‐selective cyclooxygenase (COX) inhibitors or non‐steroidal anti‐ inflammatory drugs (NSAIDs) are frequently omitted for perioperative pain relief because of potential side‐effects. COX‐2‐selective inhibitors may have a more favourable side‐effect profile. This study tested the hypothesis that the COX‐2‐selective inhibitor rofecoxib has less influence on platelet function than the NSAID diclofenac in gynaecological surgery. In addition, analgesic efficacy and side‐effects of the two drugs were compared. Methods. In this single‐centre, prospective, double‐blind, active controlled study, women undergoing vaginal hysterectomy (n=25) or breast surgery (n=25) under general anaesthesia received preoperatively 50 mg of rofecoxib p.o. followed 8 and 16 h later by two doses of placebo or three doses of diclofenac 50 mg p.o. at the same time points. We assessed arachidonic acid‐stimulated platelet aggregation before and 4 h after the first dose of study medication, estimated intraoperative blood loss, and haemoglobin loss until the first morning after surgery. Analgesic efficacy, use of rescue analgesics, and side‐effects were also recorded. Results. In the rofecoxib group, stimulated platelet aggregation was disturbed less (P=0.02), and estimated intraoperative blood loss (P=0.01) and the decrease in haemoglobin were lower (P=0.01). At similar pain ratings, the use of anti‐emetic drugs was less in the rofecoxib group (P=0.03). Conclusion. Besides having a smaller effect on platelet aggregation, one oral dose of rofecoxib 50 mg given before surgery provided postoperative analgesia similar to that given by three doses of diclofenac 50 mg and was associated with less use of anti‐emetics and less surgical blood loss in gynaecological surgery compared with diclofenac. Br J Anaesth 2004; 92: 523-3
Microwave and Quantum Magnetics
Contains research objectives and reports on five research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Institutes of Health (Grant 1 P01 CA3 1303-01
Microwave and Quantum Magnetics
Contains research objectives and reports on five research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Institutes of Health (Grant 1 P01 CA3 1303-01
The phenomenology of pareidolia in healthy subjects and patients with left- or right-hemispheric stroke
Pareidolia are perceptions of recognizable images or meaningful patterns where none exist. In recent years, this phenomenon has been increasingly studied in healthy subjects and patients with neurological or psychiatric diseases. The current study examined pareidolia production in a group of 53 stroke patients and 82 neurologically healthy controls who performed a natural images task. We found a significant reduction of absolute pareidolia production in left- and right-hemispheric stroke patients, with right-hemispheric patients producing overall fewest pareidolic output. Responses were categorized into 28 distinct categories, with ‘Animal’, ‘Human’, ‘Face’, and ‘Body parts' being the most common, accounting for 72% of all pareidolia. Regarding the percentages of the different categories of pareidolia, we found a significant reduction for the percentage of “Body parts” pareidolia in the left-hemispheric patient group as compared to the control group, while the percentage of this pareidolia type was not significantly reduced in right-hemispheric patients compared to healthy controls. These results support the hypothesis that pareidolia production may be influenced by local-global visual processing with the left hemisphere being involved in local and detailed analytical visual processing to a greater extent. As such, a lesion to the right hemisphere, that is believed to be critical for global visual processing, might explain the overall fewest pareidolic output produced by the right-hemispheric patients
Genome-wide DNA methylation detection by MethylCap-seq and Infinium HumanMethylation450 BeadChips: an independent large-scale comparison.
Two cost-efficient genome-scale methodologies to assess DNA-methylation are MethylCap-seq and Illumina's Infinium HumanMethylation450 BeadChips (HM450). Objective information regarding the best-suited methodology for a specific research question is scant. Therefore, we performed a large-scale evaluation on a set of 70 brain tissue samples, i.e. 65 glioblastoma and 5 non-tumoral tissues. As MethylCap-seq coverages were limited, we focused on the inherent capacity of the methodology to detect methylated loci rather than a quantitative analysis. MethylCap-seq and HM450 data were dichotomized and performances were compared using a gold standard free Bayesian modelling procedure. While conditional specificity was adequate for both approaches, conditional sensitivity was systematically higher for HM450. In addition, genome-wide characteristics were compared, revealing that HM450 probes identified substantially fewer regions compared to MethylCap-seq. Although results indicated that the latter method can detect more potentially relevant DNA-methylation, this did not translate into the discovery of more differentially methylated loci between tumours and controls compared to HM450. Our results therefore indicate that both methodologies are complementary, with a higher sensitivity for HM450 and a far larger genome-wide coverage for MethylCap-seq, but also that a more comprehensive character does not automatically imply more significant results in biomarker studies
- …