609 research outputs found

    Photoconductance of a submicron oxidized line in surface conductive single crystalline diamond

    Full text link
    We report on sub-bandgap optoelectronic phenomena of hydrogen-terminated diamond patterned with a submicron oxidized line. The line acts as an energy barrier for the two-dimensional hole gas located below the hydrogenated diamond surface. A photoconductive gain of the hole conductivity across the barrier is measured for sub-bandgap illumination. The findings are consistent with photogenerated electrons being trapped in defect levels within the barrier. We discuss the spatial and energetic characteristics of the optoelectronic phenomena, as well as possible photocurrent effects

    Refactoring, reengineering and evolution: paths to Geant4 uncertainty quantification and performance improvement

    Full text link
    Ongoing investigations for the improvement of Geant4 accuracy and computational performance resulting by refactoring and reengineering parts of the code are discussed. Issues in refactoring that are specific to the domain of physics simulation are identified and their impact is elucidated. Preliminary quantitative results are reported.Comment: To be published in the Proc. CHEP (Computing in High Energy Physics) 201

    Quantifying the unknown: issues in simulation validation and their experimental impact

    Full text link
    The assessment of the reliability of Monte Carlo simulations is discussed, with emphasis on uncertainty quantification and the related impact on experimental results. Methods and techniques to account for epistemic uncertainties, i.e. for intrinsic knowledge gaps in physics modeling, are discussed with the support of applications to concrete experimental scenarios. Ongoing projects regarding the investigation of epistemic uncertainties in the Geant4 simulation toolkit are reported.Comment: To be published in the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo, Como, 3-7 October 201

    Research in Geant4 electromagnetic physics design, and its effects on computational performance and quality assurance

    Full text link
    The Geant4 toolkit offers a rich variety of electromagnetic physics models; so far the evaluation of this Geant4 domain has been mostly focused on its physics functionality, while the features of its design and their impact on simulation accuracy, computational performance and facilities for verification and validation have not been the object of comparable attention yet, despite the critical role they play in many experimental applications. A new project is in progress to study the application of new design concepts and software techniques in Geant4 electromagnetic physics, and to evaluate how they can improve on the current simulation capabilities. The application of a policy-based class design is investigated as a means to achieve the objective of granular decomposition of processes; this design technique offers various advantages in terms of flexibility of configuration and computational performance. The current Geant4 physics models have been re-implemented according to the new design as a pilot project. The main features of the new design and first results of performance improvement and testing simplification are presented; they are relevant to many Geant4 applications, where computational speed and the containment of resources invested in simulation production and quality assurance play a critical role.Comment: 4 pages, 4 figures and images, to appear in proceedings of the Nuclear Science Symposium and Medical Imaging Conference 2009, Orland

    Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI

    Get PDF
    Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMR

    Geant4-related R&D for new particle transport methods

    Full text link
    A R&D project has been launched in 2009 to address fundamental methods in radiation transport simulation and revisit Geant4 kernel design to cope with new experimental requirements. The project focuses on simulation at different scales in the same experimental environment: this set of problems requires new methods across the current boundaries of condensed-random-walk and discrete transport schemes. An exploration is also foreseen about exploiting and extending already existing Geant4 features to apply Monte Carlo and deterministic transport methods in the same simulation environment. An overview of this new R&D associated with Geant4 is presented, together with the first developments in progress.Comment: 4 pages, to appear in proceedings of the Nuclear Science Symposium and Medical Imaging Conference 2009, Orland

    Validation of Geant4-based Radioactive Decay Simulation

    Full text link
    Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation of the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling
    corecore