1,249 research outputs found
Scattering of compact kinks
We study the scattering processes of kink-antikink and kink-kink pairs in a
field theory model with non-differentiable potential at its minima. The
kink-antikink scattering includes cases of capture and escape of the soliton
pair separated by a critical velocity, without windows of multi bounce followed
by escape. Around the critical velocity, the behavior is fractal. The emission
of radiation strongly influences the small velocity cases, with the most
radiative cases being also the most chaotic. The radiation appears through the
emission of compact oscillons and the formation of compact shockwaves. The
kink-kink scattering happens elastically, with no emission of radiation. Some
features of both the kink-antikink and the kink-kink scattering are explained
using a collective coordinate model, even though the kink-kink case exhibits a
null-vector problem.Comment: 22 pages, 14 figure
Baseline and triangulation geometry in a standard plenoptic camera
In this paper, we demonstrate light field triangulation to determine depth distances and baselines in a plenoptic camera. The advancement of micro lenses and image sensors enabled plenoptic cameras to capture a scene from different viewpoints with sufficient spatial resolution. While object distances can be inferred from disparities in a stereo viewpoint pair using triangulation, this concept remains ambiguous when applied in case of plenoptic cameras. We present a geometrical light field model allowing the triangulation to be applied to a plenoptic camera in order to predict object distances or to specify baselines as desired. It is shown that distance estimates from our novel method match those of real objects placed in front of the camera. Additional benchmark tests with an optical design software further validate the model’s accuracy with deviations of less than 0:33 % for several main lens types and focus settings. A variety of applications in the automotive and robotics field can benefit from this estimation model
Model-generated lexical activity predicts graded ERP amplitudes in lexical decision
Recent neurocognitive studies of visual word recognition provide information about neuronal networks correlated with processes involved in lexical access and their time course (e.g., [Holcomb, Ph.J., Grainger J. and O'Rourke, T. (2002). An Electrophysiological Study of the Effects of Orthographic Neighborhood Size on Printed Word Perception, J. of Cogn. Neurosci. 14 938–950; Binder, J.R., McKiernan, K.A., Parsons, M.E., Westbury, C.F., Possing, E.T., Kaufman, J.N. and Buchanan, L. (2003). Neural Correlates of Lexical Access during Visual Word Recognition, J. Cogn. Neurosci. 15 372–393.]). These studies relate the orthographic neighborhood density of letter strings to the amount of global lexical activity in the brain, generated by a hypothetical mental lexicon as speculated in an early paper by [Jacobs, A.M. and Carr, T.H. (1995). Mind mappers and cognitive modelers: Toward cross-fertilization, Behav. Brain. Sci. 18 362–363]. The present study uses model-generated stimuli theoretically eliciting graded global lexical activity and relates this activity to activation of lexical processing networks using event-related potentials (ERPs). The results from a lexical decision task provide evidence for an effect of lexicality around 350 ms post-stimulus and also a graded effect of global lexical activity for nonwords around 500 ms post-stimulus. The data are interpreted as reflecting two different decision processes: an identification process based on local lexical activity underlying the ‘yes’ response to words and a temporal deadline process underlying the ‘no’ response to nonwords based on global lexical activity
Music perception in cochlear implant users: An event-related potential study
Objective : Compare the processing of music-syntactic irregularities and physical oddballs between cochlear implant (CI) users and matched controls. Methods : Musical chord sequences were presented, some of which contained functionally irregular chords, or a chord with an instrumental timbre that deviated from the standard timbre. Results : In both controls and CI users, functionally irregular chords elicited early (around 200 ms) and late (around 500 ms) negative electric brain responses (early right anterior negativity,ERAN and N5). Amplitudes of effects depended on the degree of music-syntactic irregularity in both groups; effects elicited in CI users were distinctly smaller than in controls. Physically deviant chords elicited a timbre- mismatch negativity (MMN) and a P3 in both groups, again with smaller amplitudes in CI users. Conclusions : ERAN and N5 (as well as timbre-MMN and P3), can be elicited in CI users. Although amplitudes of effects were considerably smaller in the CI group, the presence of MMN and ERAN indicates that neural mechanisms of both physical and music- syntactic irregularity-detection were active in this group. q 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserve
A Novel Physiologically-Inspired Method for Myoelectric Prosthesis Control Using Pattern Classification
The contemporary myoelectric prostheses are advanced mechatronic systems, but human-machine interfacing for robust control of these devices is still an open challenge. We present a novel method for the recognition of user intention based on pattern classification which is inspired by the natural coordination of multiple muscles during hand and wrist motions. The coordinated muscle activation produces a characteristic distribution of the amplitude features of the electromyography signals, and the novel method establishes the class boundaries to capture this natural distribution. The method has been tested in healthy subjects operating a prosthesis during a challenging functional task (bottle grasping, turning and releasing). The novel approach outperformed the commonly used benchmark (linear discriminant analysis), while using shorter training and fewer features. Further developments can, therefore, lead to a method that is suitable for practical implementation and allows robust and efficient control.</p
Sample Return Propulsion Technology Development Under NASA's ISPT Project
Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.1
- …