1,694 research outputs found

    Renormalization of the singular attractive 1/r41/r^4 potential

    Full text link
    We study the radial Schr\"odinger equation for a particle of mass mm in the field of a singular attractive g2/r4g^2/{r^4} potential with particular emphasis on the bound states problem. Using the regularization method of Beane \textit{et al.}, we solve analytically the corresponding ``renormalization group flow" equation. We find in agreement with previous studies that its solution exhibits a limit cycle behavior and has infinitely many branches. We show that a continuous choice for the solution corresponds to a given fixed number of bound states and to low energy phase shifts that vary continuously with energy. We study in detail the connection between this regularization method and a conventional method modifying the short range part of the potential with an infinitely repulsive hard core. We show that both methods yield bound states results in close agreement even though the regularization method of Beane \textit{et al.} does not include explicitly any new scale in the problem. We further illustrate the use of the regularization method in the computation of electron bound states in the field of neutral polarizable molecules without dipole moment. We find the binding energy of s-wave polarization bound electrons in the field of C60_{60} molecules to be 17 meV for a scattering length corresponding to a hard core radius of the size of the molecule radius (∌3.37\sim 3.37 \AA). This result can be further compared with recent two-parameter fits using the Lennard-Jones potential yielding binding energies ranging from 3 to 25 meV.Comment: 8 page

    Changes in marijuana use linked to changes in perceived risks and disapproval

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/137899/1/occ19.pd

    Epitaxial checkerboard arrangement of nanorods in ZnMnGaO4 films studied by x-ray diffraction

    Full text link
    The intriguing nano-structural properties of a ZnMnGaO4 film epitaxially grown on MgO (001) substrate have been investigated using synchrotron radiation-based x-ray diffraction. The ZnMnGaO4 film consisted of a self-assembled checkerboard (CB) structure with perfectly aligned and regularly spaced vertical nanorods. The lattice parameters of the orthorhombic and rotated tetragonal phases of the CB structure were analyzed using H-K, H-L, and K-L cross sections of the reciprocal space maps measured around various symmetric and asymmetric reflections of the spinel structure. We demonstrate that the symmetry of atomic displacements at the phases boundaries provides the means for coherent coexistence of two domains types within the volume of the film

    Grounding knowledge and normative valuation in agent-based action and scientific commitment

    Get PDF
    Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of metabolic pathways through the manipulation and construction of small DNA-based devices and systems synthetic biology. Rather than focusing on the engineered products or ethical principles that result, I will investigate the processes by which these arise. As such, the attention will be directed to the activities of practitioners, their manipulation of tools, and the use they make of techniques to construct new metabolic devices. Using a science-in-practice approach, I investigate problems at the intersection of science, philosophy of science, and sociology of science. I consider how practitioners within this area of synthetic biology reconfigure biological understanding and ethical categories through active modelling and manipulation of known functional parts, biological pathways for use in the design of microbial machines to solve problems in medicine, technology, and the environment. We might describe this kind of problem-solving as relying on what Helen Longino referred to as “social cognition” or the type of scientific work done within what Hasok Chang calls “systems of practice”. My aim in this chapter will be to investigate the relationship that holds between systems of practice within metabolic engineering research and social cognition. I will attempt to show how knowledge and normative valuation are generated from this particular network of practitioners. In doing so, I suggest that the social nature of scientific inquiry is ineliminable to both knowledge acquisition and ethical evaluations

    Lights, Camera, Action! Exploring Effects of Visual Distractions on Completion of Security Tasks

    Full text link
    Human errors in performing security-critical tasks are typically blamed on the complexity of those tasks. However, such errors can also occur because of (possibly unexpected) sensory distractions. A sensory distraction that produces negative effects can be abused by the adversary that controls the environment. Meanwhile, a distraction with positive effects can be artificially introduced to improve user performance. The goal of this work is to explore the effects of visual stimuli on the performance of security-critical tasks. To this end, we experimented with a large number of subjects who were exposed to a range of unexpected visual stimuli while attempting to perform Bluetooth Pairing. Our results clearly demonstrate substantially increased task completion times and markedly lower task success rates. These negative effects are noteworthy, especially, when contrasted with prior results on audio distractions which had positive effects on performance of similar tasks. Experiments were conducted in a novel (fully automated and completely unattended) experimental environment. This yielded more uniform experiments, better scalability and significantly lower financial and logistical burdens. We discuss this experience, including benefits and limitations of the unattended automated experiment paradigm

    Excitation of superconducting qubits from hot non-equilibrium quasiparticles

    Full text link
    Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that "hot" non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently from quasiparticles at the gap, implying qubits can probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we predict a non-neligable increase in the qubit excited state probability P_e. By injecting hot quasiparticles into a qubit, we experimentally measure an increase of P_e in semi-quantitative agreement with the model and rule out the typically assumed thermal distribution.Comment: Main paper: 5 pages, 5 figures. Supplement: 1 page, 1 figure, 1 table. Updated to user-prepared accepted version. Key changes: Supplement added, Introduction rewritten, Figs.2,3,5 revised, Fig.4 adde

    A smartphone intervention for adolescent obesity: study protocol for a randomised controlled non-inferiority trial

    Get PDF
    Background There are few evidence-based mobile health solutions for treating adolescent obesity. The primary aim of this parallel non-inferiority trial is to assess the effectiveness of an experimental smartphone application in reducing obesity at 12 months, compared to the Temple Street W82GO Healthy Lifestyles intervention. Methods/design The primary outcome measure is change in body mass index standardised deviation score at 12 months. The secondary aim is to compare the effect of treatment on secondary outcomes, including waist circumference, insulin sensitivity, quality of life, physical activity and psychosocial health. Adolescents with a body mass index at or above the 98th percentile (12 to 17 years) will be recruited from the Obesity clinic at Temple Street Children’s University Hospital in Dublin, Ireland. W82GO is a family-based lifestyle change intervention delivered in two phases over 12 months. In the current study, participants will be randomised for phase two of treatment to either usual care or care delivered via smartphone application. One hundred and thirty-four participants will be randomised between the two study arms. An intention-to-treat analysis will be used to compare treatment differences between the groups at 12 months. Discussion The results of this study will be disseminated via open access publication and will provide important information for clinicians, patients and policy makers regarding the use of mobile health interventions in the management of adolescent obesity. Trial registration Clinicaltrials.gov NCT01804855

    Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales: proofs

    Full text link
    We consider a coupled system of two singularly perturbed reaction-diffusion equations, with two small parameters 0<ϔ≀Ό≀10< \epsilon \le \mu \le 1, each multiplying the highest derivative in the equations. The presence of these parameters causes the solution(s) to have \emph{boundary layers} which overlap and interact, based on the relative size of Ï”\epsilon and % \mu. We construct full asymptotic expansions together with error bounds that cover the complete range 0<ϔ≀Ό≀10 < \epsilon \leq \mu \leq 1. For the present case of analytic input data, we derive derivative growth estimates for the terms of the asymptotic expansion that are explicit in the perturbation parameters and the expansion order

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats

    Get PDF
    Survival depends on a balance between seeking rewards and avoiding potential threats, but the neural circuits that regulate this motivational conflict remain largely unknown. Using an approach-food vs. avoid-predator threat conflict test in rats, we identified a subpopulation of neurons in the anterior portion of the paraventricular thalamic nucleus (aPVT) which express corticotrophin-releasing factor (CRF) and are preferentially recruited during conflict. Inactivation of aPVTCRF neurons during conflict biases animal’s response toward food, whereas activation of these cells recapitulates the food-seeking suppression observed during conflict. aPVTCRF neurons project densely to the nucleus accumbens (NAc), and activity in this pathway reduces food seeking and increases avoidance. In addition, we identified the ventromedial hypothalamus (VMH) as a critical input to aPVTCRF neurons, and demonstrated that VMH-aPVT neurons mediate defensive behaviors exclusively during conflict. Together, our findings describe a hypothalamic-thalamostriatal circuit that suppresses reward-seeking behavior under the competing demands of avoiding threats.Fil: Engelke, D. S.. The University of Texas Health Science Center; Estados UnidosFil: Zhang, X. O.. The University of Texas Health Science Center; Estados UnidosFil: O’Malley, J. J.. The University of Texas Health Science Center; Estados UnidosFil: Fernandez Leon, Jose Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Centro de Investigaciones en FĂ­sica e IngenierĂ­a del Centro de la Provincia de Buenos Aires. Sede OlavarrĂ­a del Centro de Investigaciones en FĂ­sica e IngenierĂ­a del Centro de la Provincia de Buenos Aire. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en FĂ­sica e IngenierĂ­a del Centro de la Provincia de Buenos Aires. Sede OlavarrĂ­a del Centro de Investigaciones en FĂ­sica e IngenierĂ­a del Centro de la Provincia de Buenos Aires; ArgentinaFil: Li, S.. University of Manitoba; CanadĂĄFil: Kirouac, G. J.. University of Manitoba; CanadĂĄFil: Beierlein, M.. The University of Texas Health Science Center; Estados UnidosFil: Do Monte, F. H.. The University of Texas Health Science Center; Estados Unido
    • 

    corecore