3,310 research outputs found

    Exploring the views of students on the use of Facebook in university teaching and learning

    Get PDF
    Facebook use among students is almost ubiquitous; however, its use for formal academic purposes remains contested. Through an online survey monitoring student use of module Facebook pages and focus groups, this study explores studentsā€™ current academic uses of Facebook and their views on using Facebook within university modules. Students reported using Facebook for academic purposes, notably peerā€“peer communication around group work and assessment ā€“ a use not always conceptualised by students as learning. Focus groups revealed that students are not ready or equipped for the collaborative style of learning envisaged by the tutor and see Facebook as their personal domain, within which they will discuss academic topics where they see a strong relevance and purpose, notably in connection with assessment. Students use Facebook for their own mutually deļ¬ned purposes and a change in student mind- and skill-sets is required to appropriate the collaborative learning beneļ¬ts of Facebook in formal educational contexts

    Excitation of Ar 3pāµ4s-3pāµ4p Transitions by Electron Impact

    Get PDF
    Electron-impact excitation of argon from the 3p54s (J=0,2) metastable states to the 3p54p (J=0,1,2,3) manifold has been investigated in the semirelativistic first-order distorted-wave and plane-wave Born approximations. The results are compared with recent experimental data of Boffard et al. [Phys. Rev. A 59, 2749 (1999)] and R-matrix predictions by Bartschat and Zeman [Phys. Rev. A 59, R2552 (1999)]. In cases for which perturbative approaches are expected to be valid, the plane-wave Born approximation is found to be sufficiently accurate and thus allows for an efficient calculation of results over a wide range of collision energies

    Lessons from a BACE1 inhibitor trial: off-site but not off base

    Get PDF
    Alzheimer's disease (AD) is characterized by formation of neuritic plaque primarily composed of a small filamentous protein called amyloid-Ī² peptide (AĪ²). The rate-limiting step in the production of AĪ² is the processing of AĪ² precursor protein (APP) by Ī²-site APP-cleaving enzyme (BACE1). Hence, BACE1 activity plausibly plays a rate-limiting role in the generation of potentially toxic AĪ² within brain and the development of AD, thereby making it an interesting drug target. A phase II trial of the promising LY2886721 inhibitor of BACE1 was suspended in June 2013 by Eli Lilly and Co., due to possible liver toxicity. This outcome was apparently a surprise to the study's team, particularly since BACE1 knockout mice and mice treated with the drug did not show such liver toxicity. Lilly proposed that the problem was not due to LY2886721 anti-BACE1 activity. We offer an alternative hypothesis, whereby anti-BACE1 activity may induce apparent hepatotoxicity through inhibiting BACE1's processing of Ī²-galactoside Ī±-2,6-sialyltransferase I (STGal6 I). In knockout mice, paralogues, such as BACE2 or cathepsin D, could partially compensate. Furthermore, the short duration of animal studies and short lifespan of study animals could mask effects that would require several decades to accumulate in humans. Inhibition of hepatic BACE1 activity in middle-aged humans would produce effects not detectable in mice. We present a testable model to explain the off-target effects of LY2886721 and highlight more broadly that so-called off-target drug effects might actually represent off-site effects that are not necessarily off-target. Consideration of this concept in forthcoming drug design, screening, and testing programs may prevent such failures in the future

    Constructive Wall-Crossing and Seiberg-Witten

    Full text link
    We outline a comprehensive and first-principle solution to the wall-crossing problem in D=4 N=2 Seiberg-Witten theories. We start with a brief review of the multi-centered nature of the typical BPS states and recall how the wall-crossing problem thus becomes really a bound state formation/dissociation problem. Low energy dynamics for arbitrary collections of dyons is derived, from Seiberg-Witten theory, with the proximity to the so-called marginal stability wall playing the role of the small expansion parameter. We find that, surprisingly, the R3n\mathbb{R}^{3n} low energy dynamics of n+1 BPS dyons cannot be consistently reduced to the classical moduli space, \CM, yet the index can be phrased in terms of \CM. We also explain how an equivariant version of this index computes the protected spin character of the underlying field theory, where SO(3)_\CJ isometry of \CM turns out to be the diagonal subgroup of SU(2)LSU(2)_L spatial rotation and SU(2)RSU(2)_R R-symmetry. The so-called rational invariants, previously seen in the Kontsevich-Soibelman formalism of wall-crossing, are shown to emerge naturally from the orbifolding projection due to Bose/Fermi statistics.Comment: 25 pages, conference proceeding contribution for "Progress of Quantum Field Theory and String Theory," Osaka, April 201

    The Gravity Dual of the Ising Model

    Get PDF
    We evaluate the partition function of three dimensional theories of gravity in the quantum regime, where the AdS radius is Planck scale and the central charge is of order one. The contribution from the AdS vacuum sector can - with certain assumptions - be computed and equals the vacuum character of a minimal model CFT. The torus partition function is given by a sum over geometries which is finite and computable. For generic values of Newton's constant G and the AdS radius L the result has no Hilbert space interpretation, but in certain cases it agrees with the partition function of a known CFT. For example, the partition function of pure Einstein gravity with G=3L equals that of the Ising model, providing evidence that these theories are dual. We also present somewhat weaker evidence that the 3-state and tricritical Potts models are dual to pure higher spin theories of gravity based on SL(3) and E_6, respectively.Comment: 42 page

    The Central Charge of the Warped AdS^3 Black Hole

    Full text link
    The AdS/CFT conjecture offers the possibility of a quantum description for a black hole in terms of a CFT. This has led to the study of general AdS^3 type black holes with a view to constructing an explicit toy quantum black hole model. Such a CFT description would be characterized by its central charge and the dimensions of its primary fields. Recently the expression for the central charges (C_L, C_R) of the CFT dual to the warped AdS^3 have been determined using asymptotic symmetry arguments. The central charges depend, as expected, on the warping factor. We show that topological arguments, used by Witten to constrain central charges for the BTZ black hole, can be generalized to deal with the warped AdS^3 case. Topology constrains the warped factor to be rational numbers while quasinormal modes are conjectured to give the dimensions of primary fields. We find that in the limit when warping is large or when it takes special rational values the system tends to Witten's conjectured unique CFT's with central charges that are multiples of 24.Comment: 6 pages, Latex fil

    ASCA Observation of an X-Ray-Luminous Active Nucleus in Markarian 231

    Get PDF
    We have obtained a moderately long (100 kilosecond) ASCA observation of the Seyfert 1 galaxy Markarian 231, the most luminous of the local ultraluminous infrared galaxy (ULIRG) population. In the best-fitting model we do not see the X-ray source directly; the spectrum consists of a scattered power-law component and a reflection component, both of which have been absorbed by a column N_H \approx 3 X 10^(22)/cm^2. About 3/4 of the observed hard X-rays arise from the scattered component, reducing the equivalent width of the iron K alpha line. The implied ratio of 1-10 keV X-ray luminosity to bolometric luminosity, L_x/L_bol \sim 2%, is typical of Sy 1 galaxies and radio-quiet QSOs of comparable bolometric luminosities, and indicates that the bolometric luminosity is dominated by the AGN. Our estimate of the X-ray luminosity also moves Mrk 231 in line with the correlations found for AGN with extremely strong Fe II emission. A second source separated by about 2 arcminutes is also clearly detected, and contributes about 25% of the total flux.Comment: 11 pages, 3 figures; to appear in ApJ Letter

    The Bolocam 1.1 mm Lockman Hole Galaxy Survey: SHARC II 350 micron Photometry and Implications for Spectral Models, Dust Temperatures, and Redshift Estimation

    Get PDF
    We present 350 micron photometry of all 17 galaxy candidates in the Lockman Hole detected in a 1.1 mm Bolocam survey. Several of the galaxies were previously detected at 850 microns, at 1.2 mm, in the infrared by Spitzer, and in the radio. Nine of the Bolocam galaxy candidates were detected at 350 microns and two new candidates were serendipitously detected at 350 microns (bringing the total in the literature detected in this way to three). Five of the galaxies have published spectroscopic redshifts, enabling investigation of the implied temperature ranges and a comparison of photometric redshift techniques. Lambda = 350 microns lies near the spectral energy distribution peak for z = 2.5 thermally emitting galaxies. Thus, luminosities can be measured without extrapolating to the peak from detection wavelengths of lambda > 850 microns. Characteristically, the galaxy luminosities lie in the range 1.0 - 1.2 x 10^13 L_solar, with dust temperatures in the range of 40 K to 70 K, depending on the choice of spectral index and wavelength of unit optical depth. The implied dust masses are 3 - 5 x 10^8 M_solar. We find that the far-infrared to radio relation for star-forming ULIRGs systematically overpredicts the radio luminosities and overestimates redshifts on the order of Delta z ~ 1, whereas redshifts based on either on submillimeter data alone or the 1.6 micron stellar bump and PAH features are more accurate.Comment: In Press (to appear in Astrophysical Journal, ApJ 20 May 2006 v643 1) 47 pages, 10 figures, 4 table

    Mapping Children's Discussions of Evidence in Science to Assess Collaboration and Argumentation

    Get PDF
    The research reported in this paper concerns the development of children's skills of interpreting and evaluating evidence in science. Previous studies have shown that school teaching often places limited emphasis on the development of these skills, which are necessary for children to engage in scientific debate and decision-making. The research, undertaken in the UK, involved four collaborative decision-making activities to stimulate group discussion, each was carried out with five groups of four children (10-11 years old). The research shows how the children evaluated evidence for possible choices and judged whether their evidence was sufficient to support a particular conclusion or the rejection of alternative conclusions. A mapping technique was developed to analyse the discussions and identify different "levels" of argumentation. The authors conclude that suitable collaborative activities that focus on the discussion of evidence can be developed to exercise children's ability to argue effectively in making decisions
    • ā€¦
    corecore