3,186 research outputs found

    Complex order parameter symmetry and thermal conductivity

    Full text link
    Thermal behaviour of superconductors with complex order parameter symmetry is studied within a weak coupling theory. It is shown numerically, that the thermal nature of the different components of complex order parametrs are qualitatively different. Within the complex order parameter scenario, the recent experimental observations by Krishna {\it et al.}, [Science {\bf 277}, 83 (1997)] on magnetothermal conductivity and by J. Ma {\it et al.}, [Science {\bf 267}, 862 (1995)] on temperature dependent gap anisotropy for high temperature superconductors can have natural explanation.Comment: 6 pages, 3 figures and macros attached, Europhysics Letters (1998) in pres

    Fractional Statistics in terms of the r-Generalized Fibonacci Sequences

    Get PDF
    We develop the basis of the two dimensional generalized quantum statistical systems by using results on rr-generalized Fibonacci sequences. According to the spin value ss of the 2d-quasiparticles, we distinguish four classes of quantum statistical systems indexed by s=0,1/2:mod(1) s=0,1/2:mod(1), s=1/M:mod(1)s=1/M:mod(1), s=n/M:mod(1)s=n/M:mod(1) and 0s1:mod(1)0\leq s\leq 1:mod(1). For quantum gases of quasiparticles with s=1/M:mod(1)s=1/M:mod(1), M2,M\geq 2,, we show that the statistical weights densities ρM\rho_M are given by the integer hierarchies of Fibonacci sequences. This is a remarkable result which envelopes naturally the Fermi and Bose statistics and may be thought of as an alternative way to the Haldane interpolating statistical method.Comment: Late

    Hierarchy wave functions--from conformal correlators to Tao-Thouless states

    Full text link
    Laughlin's wave functions, describing the fractional quantum Hall effect at filling factors ν=1/(2k+1)\nu=1/(2k+1), can be obtained as correlation functions in conformal field theory, and recently this construction was extended to Jain's composite fermion wave functions at filling factors ν=n/(2kn+1)\nu=n/(2kn+1). Here we generalize this latter construction and present ground state wave functions for all quantum Hall hierarchy states that are obtained by successive condensation of quasielectrons (as opposed to quasiholes) in the original hierarchy construction. By considering these wave functions on a cylinder, we show that they approach the exact ground states, the Tao-Thouless states, when the cylinder becomes thin. We also present wave functions for the multi-hole states, make the connection to Wen's general classification of abelian quantum Hall fluids, and discuss whether the fractional statistics of the quasiparticles can be analytically determined. Finally we discuss to what extent our wave functions can be described in the language of composite fermions.Comment: 9 page

    Cumulative and Differential Effects of Early Child Care and Middle Childhood Out-of-School Time on Adolescent Functioning.

    Get PDF
    Effects associated with early child care and out-of-school time (OST) during middle childhood were examined in a large sample of U.S. adolescents (N = 958). Both higher quality early child care AND more epochs of organized activities (afterschool programs and extracurricular activities) during middle childhood were linked to higher academic achievement at age 15. Differential associations were found in the behavioral domain. Higher quality early child care was associated with fewer externalizing problems, whereas more hours of early child care was linked to greater impulsivity. More epochs of organized activities was associated with greater social confidence. Relations between early child care and adolescent outcomes were not mediated or moderated by OST arrangements in middle childhood, consistent with independent, additive relations of these nonfamilial settings

    Spin Susceptibility and Gap Structure of the Fractional-Statistics Gas

    Full text link
    This paper establishes and tests procedures which can determine the electron energy gap of the high-temperature superconductors using the t ⁣ ⁣Jt\!-\!J model with spinon and holon quasiparticles obeying fractional statistics. A simpler problem with similar physics, the spin susceptibility spectrum of the spin 1/2 fractional-statistics gas, is studied. Interactions with the density oscillations of the system substantially decrease the spin gap to a value of (0.2±0.2)(0.2 \pm 0.2) ωc\hbar \omega_c, much less than the mean-field value of ωc\hbar\omega_c. The lower few Landau levels remain visible, though broadened and shifted, in the spin susceptibility. As a check of the methods, the single-particle Green's function of the non-interacting Bose gas viewed in the fermionic representation, as computed by the same approximation scheme, agrees well with the exact results. The same mechanism would reduce the gap of the t ⁣ ⁣Jt\!-\!J model without eliminating it.Comment: 35 pages, written in REVTeX, 16 figures available upon request from [email protected]

    Electron Self-Energy of High Temperature Superconductors as Revealed by Angle Resolved Photoemission

    Full text link
    In this paper, we review some of the work our group has done in the past few years to obtain the electron self-energy of high temperature superconductors by analysis of angle-resolved photoemission data. We focus on three examples which have revealed: (1) a d-wave superconducting gap, (2) a collective mode in the superconducting state, and (3) pairing correlations in the pseudogap phase. In each case, although a novel result is obtained which captures the essense of the data, the conventional physics used leads to an incomplete picture. This indicates that new physics needs to be developed to obtain a proper understanding of these materials.Comment: 5 pages, revtex, 3 encapsulated postscript figures, SNS97 proceeding

    Statistical Interparticle Potential between Two Anyons

    Full text link
    The density matrix of a two-anyon system is evaluated and used to investigate the "statistical interparticle potential" following the theory of Uhlenbeck. The main purpose is to see how the statistical potential will depend on the fractional statistical parameter α\alpha. The result shows that the statistical potential for a two-anyon system with α12\alpha\ge {1\over2} is always repulsive. For the system with 0<α<120<\alpha< {1\over2}, the potential is repulsive at short distances and becomes attractive at long distances. It remains only in the boson system (α=0\alpha=0) that the repulsive potential arising from the exclusion principle can disappear and lead to an attractive potential at all distances.Comment: Latex 5 pages, correct typos and figur

    Quantum Hall quasielectron operators in conformal field theory

    Full text link
    In the conformal field theory (CFT) approach to the quantum Hall effect, the multi-electron wave functions are expressed as correlation functions in certain rational CFTs. While this approach has led to a well-understood description of the fractionally charged quasihole excitations, the quasielectrons have turned out to be much harder to handle. In particular, forming quasielectron states requires non-local operators, in sharp contrast to quasiholes that can be created by local chiral vertex operators. In both cases, the operators are strongly constrained by general requirements of symmetry, braiding and fusion. Here we construct a quasielectron operator satisfying these demands and show that it reproduces known good quasiparticle wave functions, as well as predicts new ones. In particular we propose explicit wave functions for quasielectron excitations of the Moore-Read Pfaffian state. Further, this operator allows us to explicitly express the composite fermion wave functions in the positive Jain series in hierarchical form, thus settling a longtime controversy. We also critically discuss the status of the fractional statistics of quasiparticles in the Abelian hierarchical quantum Hall states, and argue that our construction of localized quasielectron states sheds new light on their statistics. At the technical level we introduce a generalized normal ordering, that allows us to "fuse" an electron operator with the inverse of an hole operator, and also an alternative approach to the background charge needed to neutralize CFT correlators. As a result we get a fully holomorphic CFT representation of a large set of quantum Hall wave functions.Comment: minor changes, publishe

    Numerical Tests of the Chiral Luttinger Liquid Theory for Fractional Hall Edges

    Full text link
    We report on microscopic numerical studies which support the chiral Luttinger liquid theory of the fractional Hall edge proposed by Wen. Our calculations are based in part on newly proposed and accurate many-body trial wavefunctions for the low-energy edge excitations of fractional incompressible states.Comment: 12 pages + 1 figure, Revte

    Possible Stellar Metallicity Enhancements from the Accretion of Planets

    Get PDF
    A number of recently discovered extrasolar planet candidates have surprisingly small orbits, which may indicate that considerable orbital migration takes place in protoplanetary systems. A natural consequence of orbital migration is for a series of planets to be accreted, destroyed, and then thoroughly mixed into the convective envelope of the central star. We study the ramifications of planet accretion for the final main sequence metallicity of the star. If maximum disk lifetimes are on the order of 10 Myr, stars with masses near 1 solar mass are predicted to have virtually no metallicity enhancement. On the other hand, early F and late A type stars with masses of 1.5--2.0 solar masses can experience significant metallicity enhancements due to their considerably smaller convection zones during the first 10 Myr of pre-main-sequence evolution. We show that the metallicities of an aggregate of unevolved F stars are consistent with an average star accreting about 2 Jupiter-mass planets from a protoplanetary disk having a 10 Myr dispersal time.Comment: 14 pages, AAS LaTeX, 3 figures, accepted to ApJ Letter
    corecore