research

Spin Susceptibility and Gap Structure of the Fractional-Statistics Gas

Abstract

This paper establishes and tests procedures which can determine the electron energy gap of the high-temperature superconductors using the t ⁣ ⁣Jt\!-\!J model with spinon and holon quasiparticles obeying fractional statistics. A simpler problem with similar physics, the spin susceptibility spectrum of the spin 1/2 fractional-statistics gas, is studied. Interactions with the density oscillations of the system substantially decrease the spin gap to a value of (0.2±0.2)(0.2 \pm 0.2) ωc\hbar \omega_c, much less than the mean-field value of ωc\hbar\omega_c. The lower few Landau levels remain visible, though broadened and shifted, in the spin susceptibility. As a check of the methods, the single-particle Green's function of the non-interacting Bose gas viewed in the fermionic representation, as computed by the same approximation scheme, agrees well with the exact results. The same mechanism would reduce the gap of the t ⁣ ⁣Jt\!-\!J model without eliminating it.Comment: 35 pages, written in REVTeX, 16 figures available upon request from [email protected]

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/02/2019