3,194 research outputs found
Exact Nonperturbative Unitary Amplitudes for 1->N Transitions
I present an extension to arbitrary N of a previously proposed field
theoretic model, in which unitary amplitudes for processes were
obtained. The Born amplitude in this extension has the behavior
expected in a bosonic field theory. Unitarity
is violated when , or when Numerical
solutions of the coupled Schr\"odinger equations shows that for weak coupling
and a large range of N>\ncrit, the exact unitary amplitude is reasonably fit
by a factorized expression |A(1->N)| \sim (0.73 /N) \cdot \exp{(-0.025/\g2)}.
The very small size of the coefficient 1/\g2 , indicative of a very weak
exponential suppression, is not in accord with standard discussions based on
saddle point analysis, which give a coefficient The weak dependence
on could have experimental implications in theories where the exponential
suppression is weak (as in this model). Non-perturbative contributions to
few-point correlation functions in this theory would arise at order $K\ \simeq\
\left((0.05/\g2)+ 2\ ln{N}\right)/ \ ln{(1/\g2)}\g2.$Comment: 11 pages, 3 figures (not included
Hall Effect in the mixed state of moderately clean superconductors
The Hall conductivity in the mixed state of a clean () type-II
s-wave superconductor is determined from a microscopic calculation within a
quasiclassical approximation. We find that below the superconducting transition
the contribution to the transverse conductivity due to dynamical fluctuations
of the order parameter is compensated by the modification of the quasiparticle
contribution. In this regime the nonlinear behaviour of the Hall angle is
governed by the change in the effective quasiparticle scattering rate due to
the reduction in the density of states at the Fermi level. The connection with
experimental results is discussed
Symmetric Skyrmions
We present candidates for the global minimum energy solitons of charge one to
nine in the Skyrme model, generated using sophisticated numerical algorithms.
Assuming the Skyrme model accurately represents the low energy limit of QCD,
these configurations correspond to the classical nuclear ground states of the
light elements. The solitons found are particularly symmetric, for example, the
charge seven skyrmion has icosahedral symmetry, and the shapes are shown to fit
a remarkable sequence defined by a geometric energy minimization (GEM) rule. We
also calculate the energies and sizes to within at least a few percent
accuracy. These calculations provide the basis for a future investigation of
the low energy vibrational modes of skyrmions and hence the possibility of
testing the Skyrme model against experiment.Comment: latex, 9 pages, 1 figure (fig1.gif
Quasiparticle thermal conductivity in the vortex state of high-T cuprates
We present the results of a microscopic calculation of the longitudinal
thermal conductivity, , of a d-wave superconductor in the mixed state.
Our results show an increase in the thermal conductivity with the applied field
at low temperatures, and a decrease followed by a nearly field independent
at higher temperatures, in qualitative agreement with the
experimental results. We discuss the relationship between the slope of the
superconducting gap and the plateau in .Comment: 4 pages, 3 figures, very minor changes to text, published versio
Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics
The atmospheric greenhouse effect, an idea that many authors trace back to
the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896),
and which is still supported in global climatology, essentially describes a
fictitious mechanism, in which a planetary atmosphere acts as a heat pump
driven by an environment that is radiatively interacting with but radiatively
equilibrated to the atmospheric system. According to the second law of
thermodynamics such a planetary machine can never exist. Nevertheless, in
almost all texts of global climatology and in a widespread secondary literature
it is taken for granted that such mechanism is real and stands on a firm
scientific foundation. In this paper the popular conjecture is analyzed and the
underlying physical principles are clarified. By showing that (a) there are no
common physical laws between the warming phenomenon in glass houses and the
fictitious atmospheric greenhouse effects, (b) there are no calculations to
determine an average surface temperature of a planet, (c) the frequently
mentioned difference of 33 degrees Celsius is a meaningless number calculated
wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the
assumption of a radiative balance is unphysical, (f) thermal conductivity and
friction must not be set to zero, the atmospheric greenhouse conjecture is
falsified.Comment: 115 pages, 32 figures, 13 tables (some typos corrected
Charge-Spin Separation in 2D Fermi Systems: Singular Interactions as Modified Commutators, and Solution of 2D Hubbard Model in Bosonized Approximation
The general 2-dimensional fermion system with repulsive interactions
(typified by the Hubbard Model) is bosonized, taking into account the finite
on-shell forward scattering phase shift derived in earlier papers. By taking
this phase shift into account in the bosonic commutation relations a consistent
picture emerges showing the charge-spin separation and anomalous exponents of
the Luttinger liquid.Comment: Latex file 14 pages. email: [email protected]
Distributed situation awareness in dynamic systems: Theoretical development and application of an ergonomics methodology
The purpose of this paper is to propose foundations for a theory of situation awareness based on the analysis of interactions between agents (i.e., both human and non-human) in subsystems. This approach may help promote a better understanding of technology-mediated interaction in systems, as well as helping in the formulation of hypotheses and predictions concerning distributed situation awareness. It is proposed that agents within a system each hold their own situation awareness which may be very different from (although compatible with) other agents. It is argued that we should not always hope for, or indeed want, sharing of this awareness, as different system agents have different purposes. This view marks situation awareness as a
1
dynamic and collaborative process that binds agents together on tasks on a moment-by-moment basis. Implications of this viewpoint for development of a new theory of, and accompanying methodology for, distributed situation awareness are offered
Single-Particle Green Functions in Exactly Solvable Models of Bose and Fermi Liquids
Based on a class of exactly solvable models of interacting bose and fermi
liquids, we compute the single-particle propagators of these systems exactly
for all wavelengths and energies and in any number of spatial dimensions. The
field operators are expressed in terms of bose fields that correspond to
displacements of the condensate in the bose case and displacements of the fermi
sea in the fermi case.
Unlike some of the previous attempts, the present attempt reduces the answer
for the spectral function in any dimension in both fermi and bose systems to
quadratures.
It is shown that when only the lowest order sea-displacement terms are
included, the random phase approximation in its many guises is recovered in the
fermi case, and Bogoliubov's theory in the bose case. The momentum distribution
is evaluated using two different approaches, exact diagonalisation and the
equation of motion approach.
The novelty being of course, the exact computation of single-particle
properties including short wavelength behaviour.Comment: Latest version to be published in Phys. Rev. B. enlarged to around 40
page
Theory of many-fermion systems II: The case of Coulomb interactions
In a recent paper (cond-mat/9703164) a general field-theoretical description
of many-fermion systems with short-ranged interactions has been developed. Here
we extend this theory to the case of disordered electrons interacting via a
Coulomb potential. A detailed discussion is given of the Ward identity that
controls the soft modes in the system, and the generalized nonlinear sigma
model for the Coulombic case is derived and discussed.Comment: 12 pp., REVTeX, no figs, final version as publishe
Iso-spectral potential and inflationary quantum cosmology
Using the factorization approach of quantum mechanics, we obtain a family of
isospectral scalar potentials for power law inflationary cosmology. The
construction is based on a scattering Wheeler-DeWitt solution. These
iso-spectrals have new features, they give a mechanism to end inflation, as
well as the possibility to have new inflationary epochs. The procedure can be
extended to other cosmological models.Comment: 14 pages, 5 figure
- …