6 research outputs found

    Normal Sweat Secretion Despite Impaired Growth Hormone-Insulin-Like Growth Factor-I Axis in Obese Subjects

    Get PDF
    Adults with GH deficiency are known to exhibit reduced sweating. Whether sweating capacity is impacted in obese subjects with impaired GH secretion have not previously been investigated. The main objective was to investigate sweat secretion rate and the GH-IGF-I axis in obese subjects before and after weight loss. Sixteen severely obese women (BMI, 40.6 ± 1.1 kg/m2) were investigated before and after a diet-induced weight loss. Sixteen age-matched nonobese women served as controls. The obese subjects presented the characteristic decreased GH release, hyperinsulinaemia, increased FFA levels, and impaired insulin sensitivity, which all were normalised after diet-induced weight loss of 30 ± 5 kg. Sweat secretion rates were similar comparing obese and nonobese subjects (78 ± 10 versus 82 ± 9 mg/30 minutes) and sweat secretion did not change after a diet-induced weight loss in obese subjects. We conclude that although obese subjects have markedly reduced GH release and impaired IGF-I levels, sweat secretion rate is found to be normal

    Safety and convenience of once-weekly somapacitan in adult GH deficiency: a 26-week randomized, controlled trial

    Get PDF
    OBJECTIVE: Somapacitan is a reversible albumin-binding growth hormone (GH) derivative, developed for once-weekly administration. This study aimed to evaluate the safety of once-weekly somapacitan vs once-daily Norditropin. Local tolerability and treatment satisfaction were also assessed. DESIGN: 26-week randomized, controlled phase 3 safety and tolerability trial in six countries (Nbib2382939). METHODS: Male or female patients aged 18-79 years with adult GH deficiency (AGHD), treated with once-daily GH for ≥6 months, were randomized to once-weekly somapacitan ( = 61) or once-daily Norditropin ( = 31) administered subcutaneously by pen. Both treatments were dose titrated for 8 weeks to achieve insulin-like growth factor I (IGF-I) standard deviation score (SDS) levels within the normal range, and then administered at a fixed dose. Outcome measures were adverse events (AEs), including injection site reactions; occurrence of anti-somapacitan/anti-GH antibodies and change in treatment satisfaction, assessed using the Treatment Satisfaction Questionnaire for Medication-9 (TSQM-9). RESULTS: Mean IGF-I SDS remained between 0 and 2 SDS throughout the trial in both groups. AEs were mostly mild or moderate and transient in nature. The most common AEs were nasopharyngitis, headache and fatigue in both groups. More than 1500 somapacitan injections were administered and no clinically significant injection site reactions were reported. No anti-somapacitan or anti-GH antibodies were detected. The TSQM-9 score for convenience increased significantly more with somapacitan vs Norditropin ( = 0.0171). CONCLUSIONS: In this 26-week trial in patients with AGHD, somapacitan was well tolerated and no safety issues were identified. Once-weekly somapacitan was reported to be more convenient than once-daily Norditropin

    Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis

    No full text
    In skeletal muscle and tendon the extracellular matrix confers important tensile properties and is crucially important for tissue regeneration after injury. Musculoskeletal tissue adaptation is influenced by mechanical loading, which modulates the availability of growth factors, including growth hormone (GH) and insulin-like growth factor-I (IGF-I), which may be of key importance. To test the hypothesis that GH promotes matrix collagen synthesis in musculotendinous tissue, we investigated the effects of 14 day administration of 33–50 μg kg−1 day−1 recombinant human GH (rhGH) in healthy young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P < 0.01 and P= 0.02), and muscle collagen I mRNA expression and muscle collagen protein synthesis increased by 2.3-fold and 5.8-fold, respectively (P < 0.01 and P= 0.06). Myofibrillar protein synthesis was unaffected by elevation of GH and IGF-I. Moderate exercise did not enhance the effects of GH manipulation. Thus, increased GH availability stimulates matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue
    corecore