5 research outputs found

    Simulation of Hydrogen Releases from Fuel-Cell Vehicles in Tunnels

    Get PDF

    The development of a microgravity experiment involving columnar to equiaxed transition for solidification of a Ti-Al based alloy

    No full text
    The authors are members of the integrated project Intermetallic Materials Processing in Relation to Earth and Space Solidification (IMPRESS), funded within the European Framework (FP6). One of the aims of IMPRESS is to develop new alloys and processes for the casting of TiAl-based turbine blades for the next generation of aero and industrial gas turbine engines. Within IMPRESS, two related issues have been identified during the primary solidification stage, namely, segregation and the columnar-to-equiaxed transition (CET). The authors have set out to isolate the effects of thermo-solutal convection, by designing a microgravity experiment to be performed on a European Space Agency platform. This experiment will investigate the CET formation during solidification. It is planned to use a sounding rocket providing a microgravity time of approximately twelve minutes. The results of this microgravity solidification experiment will be used as unique benchmark data for development and validation of new computational models of TiAl solidification. This in turn will produce accurate models and ultimately new robust industrial processes by project partners in the aerospace industry. The evolution of the design of the microgravity experiment is discussed and the results of preliminary ground reference experiments are presented. Future plans and objectives for the project are also highlighted. © (2010) Trans Tech Publications.status: publishe

    OSIRIS-REx Contamination Control Strategy and Implementation

    Get PDF
    OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and 2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians
    corecore