1,136 research outputs found

    Formation of Polymorphic Cluster Phases for Purely Repulsive Soft Spheres

    Full text link
    We present results from density functional theory and computer simulations that unambiguously predict the occurrence of first-order freezing transitions for a large class of ultrasoft model systems into cluster crystals. The clusters consist of fully overlapping particles and arise without the existence of attractive forces. The number of particles participating in a cluster scales linearly with density, therefore the crystals feature density-independent lattice constants. Clustering is accompanied by polymorphic bcc-fcc transitions, with fcc being the stable phase at high densities.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    X-ray Spectroscopy of Candidate Ultracompact X-ray Binaries

    Full text link
    We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries (LMXBs) 4U 1850-087 and 4U 0513-40 as part of our continuing study of known and candidate ultracompact binaries. The LMXB 4U 1850-087 is one of four systems in which we had previously inferred an unusual Ne/O ratio in the absorption along the line of sight, most likely from material local to the binaries. However, our recent Chandra X-ray Observatory LETGS spectrum of 4U 1850-087 finds a Ne/O ratio by number of 0.22+/-0.05, smaller than previously measured and consistent with the expected interstellar value. We propose that variations in the Ne/O ratio due to source variability, as previously observed in these sources, can explain the difference between the low- and high-resolution spectral results for 4U 1850-087. Our XMM-Newton RGS observation of 4U 0513-40 also shows no unusual abundance ratios in the absorption along the line of sight. We also present spectral results from a third candidate ultracompact binary, 4U 1822-000, whose spectrum is well fit by an absorbed power-law + blackbody model with absorption consistent with the expected interstellar value. Finally, we present the non-detection of a fourth candidate ultracompact binary, 4U 1905+000, with an upper limit on the source luminosity of < 1 x 10^{32} erg s^{-1}. Using archival data, we show that the source has entered an extended quiescent state.Comment: 8 pages, 3 figures, accepted for publication to the Astrophysical Journa

    The Compact UV Nucleus of M33

    Get PDF
    The most luminous X-ray source in the Local Group is associated with the nucleus of M33. This source, M33 X-8, appears modulated by ~20% over a ~106 day period, making it unlikely that the combined emission from unresolved sources could explain the otherwise persistent ~1e39 erg/s X-ray flux (Dubus et al. 1997, Hernquist et al. 1991). We present here high resolution UV imaging of the nucleus with the Planetary Camera of the HST undertaken in order to search for the counterpart to X-8. The nucleus is bluer and more compact than at longer wavelength images but it is still extended with half of its 3e38 erg/s UV luminosity coming from the inner 0.14". We cannot distinguish between a concentrated blue population and emission from a single object.Comment: 3 figures, accepted for publication in ApJ Letter

    On the Validity of the 0-1 Test for Chaos

    Full text link
    In this paper, we present a theoretical justification of the 0-1 test for chaos. In particular, we show that with probability one, the test yields 0 for periodic and quasiperiodic dynamics, and 1 for sufficiently chaotic dynamics

    Bifurcation analysis of a normal form for excitable media: Are stable dynamical alternans on a ring possible?

    Full text link
    We present a bifurcation analysis of a normal form for travelling waves in one-dimensional excitable media. The normal form which has been recently proposed on phenomenological grounds is given in form of a differential delay equation. The normal form exhibits a symmetry preserving Hopf bifurcation which may coalesce with a saddle-node in a Bogdanov-Takens point, and a symmetry breaking spatially inhomogeneous pitchfork bifurcation. We study here the Hopf bifurcation for the propagation of a single pulse in a ring by means of a center manifold reduction, and for a wave train by means of a multiscale analysis leading to a real Ginzburg-Landau equation as the corresponding amplitude equation. Both, the center manifold reduction and the multiscale analysis show that the Hopf bifurcation is always subcritical independent of the parameters. This may have links to cardiac alternans which have so far been believed to be stable oscillations emanating from a supercritical bifurcation. We discuss the implications for cardiac alternans and revisit the instability in some excitable media where the oscillations had been believed to be stable. In particular, we show that our condition for the onset of the Hopf bifurcation coincides with the well known restitution condition for cardiac alternans.Comment: to be published in Chao

    A test for a conjecture on the nature of attractors for smooth dynamical systems

    Full text link
    Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples such as Lorenz and H\'enon-like attractors and enjoy strong statistical properties. It is natural to conjecture (or at least hope) that most dynamical systems fall into these two extreme situations. We describe a numerical test for such a conjecture/hope and apply this to the logistic map where the conjecture holds by a theorem of Lyubich, and to the Lorenz-96 system in 40 dimensions where there is no rigorous theory. The numerical outcome is almost identical for both (except for the amount of data required) and provides evidence for the validity of the conjecture.Comment: Accepted version. Minor modifications from previous versio

    Two-step actions in infancy—the TWAIN model

    Get PDF
    In this paper, we propose a novel model—the TWAIN model—to describe the durations of two-step actions in a reach-to-place task in human infants. Previous research demonstrates that infants and adults plan their actions across multiple steps. They adjust, for instance, the velocity of a reaching action depending on what they intend to do with the object once it is grasped. Despite these findings and irrespective of the larger context in which the action occurs, current models (e.g., Fitts’ law) target single, isolated actions, as, for example, pointing to a goal. In the current paper, we develop and empirically test a more ecologically valid model of two-step action planning. More specifically, 61 18-month olds took part in a reach-to-place task and their reaching and placing durations were measured with a motion-capture system. Our model explained the highest amount of variance in placing duration and outperformed six previously suggested models, when using model comparison. We show that including parameters of the first action step, here the duration of the reaching action, can improve the description of the second action step, here the duration of the placing action. This move towards more ecologically valid models of action planning contributes knowledge as well as a framework for assessing human machine interactions. The TWAIN model provides an updated way to quantify motor learning by the time these abilities develop, which might help to assess performance in typically developing human children

    The development of visually guided stepping

    Get PDF
    Adults use vision during stepping and walking to fine-tune foot placement. However, the developmental profile of visually guided stepping is unclear. We asked (1) whether children use online vision to fine-tune precise steps and (2) whether preci- sion stepping develops as part of broader visuomotor development, alongside other fundamental motor skills like reaching. With 6-(N = 11), 7-(N = 11), 8-(N = 11)-year-olds and adults (N = 15), we manipulated visual input during steps and reaches. Using motion capture, we measured step and reach error, and postural stability. We expected (1) both steps and reaches would be visually guided (2) with similar developmental profiles (3) foot placement biases that promote stability, and (4) correlations between postural stability and step error. Children used vision to fine-tune both steps and reaches. At all ages, foot placement was biased (albeit not in the predicted directions). Contrary to our predictions, step error was not correlated with postural stability. By 8 years, children’s step and reach error were adult-like. Despite similar visual control mechanisms, stepping and reaching had different developmental profiles: step error reduced with age whilst reach error was lower and stable with age. We argue that the development of both visually guided and non-visually guided action is limb-specific

    Automated Point-based Tolerance Analysis Model Creation for Sheet Metal Parts

    Get PDF
    AbstractThis paper focuses on a concept that shows a way to automatically create a point-based tolerance analysis model out of existing development data. Nowadays solutions for an automated tolerance simulation model creation are using a static approach for the model build-up. For this purpose product-/ production- development data are automatically mapped on preexisting models (e.g. skeleton models). If chances during development process occur, the tolerance simulation models have to be reworked. Today only simple changes in the model can be automated (e.g. change of distribution, tolerance range etc.). A complete new tolerance simulation model build-up process for dynamically changing product-/ production- development information is not possible. To give an application example, tolerance simulation models for sheet metal parts in automotive industry are based on different development data. Before the first simulation model is created (to secure the tolerance concepts etc.), all necessary information have already been developed, e.g. in the automotive industry's development process: part geometry, tolerance information, assembly graph, jig and fixture concept, joining location and measurement points. Thus the automated simulation generation should be possible.First step is to describe an interface for a dynamic model creation in tolerance simulation systems. In a second step preprocessing of development data is necessary to map them into tolerance simulation software restrictions. This delivers a solution to fill the gap between the PDM-/ CAD and the CAT-system. The considered approach for automated tolerance simulation model creation provides the opportunity to build-up the tolerance analysis models highly efficient and almost automatically. Tolerance analysis can then be used to rapidly calculate several options. This offers the possibility to increase the product maturity level at a very early stage of the development process
    • …
    corecore