1,113 research outputs found
Equivariant differential characters and symplectic reduction
We describe equivariant differential characters (classifying equivariant
circle bundles with connections), their prequantization, and reduction
Twisted K-theory and finite-dimensional approximation
We provide a finite-dimensional model of the twisted K-group twisted by any
degree three integral cohomology class of a CW complex. One key to the model is
Furuta's generalized vector bundle, and the other is a finite-dimensional
approximation of Fredholm operators.Comment: 26 pages, LaTeX 2e, Xypic; main theorem improve
Silicon Photo-Multiplier radiation hardness tests with a beam controlled neutron source
We report radiation hardness tests performed at the Frascati Neutron
Generator on silicon Photo-Multipliers, semiconductor photon detectors built
from a square matrix of avalanche photo-diodes on a silicon substrate. Several
samples from different manufacturers have been irradiated integrating up to
7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been
recorded during the neutron irradiation and a gradual deterioration of their
properties was found to happen already after an integrated fluence of the order
of 10^8 1-MeV-equivalent neutrons per cm^2.Comment: 7 pages, 6 figures, Submitted to Nucl. Inst. Meth.
Application of Hamamatsu MPPC to T2K Neutrino Detectors
A special type of Hamamatsu MPPC, with a sensitive area of 1.3x1.3mm^2
containing 667 pixels with 50x50um^2 each, has been developed for the near
neutrino detector in the T2K long baseline neutrino experiment. About 60 000
MPPCs will be used in total to read out the plastic scintillator detectors with
wavelength shifting fibers. We report on the basic performance of MPPCs
produced for T2K.Comment: Contribution to the proceedings of NDIP 2008, Aix-les-Bains, France,
June 15-20, 200
The Effect of Substratum Roughness on Osteoclast-like Cells In Vitro
Calcium phosphate powders were used to produce three groups of experimental substrata for the culture of primary rat bone marrow cells in conditions which permitted the survival and function of osteoclasts. Each of the three experimental groups were subdivided by differences in substratum surface roughness and following a culture period of 7 to 11 days, the culture units were stained for tartrate-resistant acid phosphatase activity. In all samples both small, sometimes mononuclear, and large multinucleate cells stained positive for tartrate-resistant acid phosphatase activity and the numbers and types of cells were quantified and statistically analyzed. Following histochemical staining the samples were dehydrated and gold coated for examination by scanning electron microscopy. Cells were found to create distinct resorption lacunae in most substrata, but not on the dense, high temperature sintered hydroxyapatite, and cells responsible for this activity were confirmed as exhibiting positive tartrate resistant acid phosphatase activity. Statistical analyses showed that both the total number of tartrate-resistant acid phosphatase positive cells and the number of multinucleate tartrate-resistant acid phosphatase positive cells was greater on the rougher than the smoother surfaces
Interhemispheric communication during haptic self-perception
During the haptic exploration of a planar surface, slight resistances against the hand's movement are illusorily perceived as asperities (bumps) in the surface. If the surface being touched is one's own skin, an actual bump would also produce increased tactile pressure from the moving finger onto the skin. We investigated how kinaesthetic and tactile signals combine to produce haptic perceptions during self-touch. Participants performed two successive movements with the right hand. A haptic force-control robot applied resistances to both movements, and participants judged which movement was felt to contain the larger bump. An additional robot delivered simultaneous but task-irrelevant tactile stroking to the left forearm. These strokes contained either increased or decreased tactile pressure synchronized with the resistance-induced illusory bump encountered by the right hand. We found that the size of bumps perceived by the right hand was enhanced by an increase in left tactile pressure, but also by a decrease. Tactile event detection was thus transferred interhemispherically, but the sign of the tactile information was not respected. Randomizing (rather than blocking) the presentation order of left tactile stimuli abolished these interhemispheric enhancement effects. Thus, interhemispheric transfer during bimanual self-touch requires a stable model of temporally synchronized events, but does not require geometric consistency between hemispheric information, nor between tactile and kinaesthetic representations of a single common object
Collective Charge Excitation in a Dimer Mott Insulating System
Charge dynamics in a dimer Mott insulating system, where a non-polar
dimer-Mott (DM) phase and a polar charge-ordered (CO) phase compete with each
other, are studied. In particular, collective charge excitations are analyzed
in the three different models where the internal-degree of freedom in a dimer
is taken into account. Collective charge excitation exists both in the
non-polar DM phase and the polar CO phase, and softens in the phase boundary.
This mode is observable by the optical conductivity spectra where the light
polarization is parallel to the electric polarization in the polar CO phase.
Connections between the present theory and the recent experimental results in
kappa-(BEDT-TTF)2Cu2(CN)3 are discussed.Comment: 5 pages, 4 figure
Performance of Multi-Pixel Photon Counters for the T2K near detectors
We have developed a Multi-Pixel Photon Counter (MPPC) for the neutrino
detectors of T2K experiment. About 64,000 MPPCs have been produced and tested
in about a year. In order to characterize a large number of MPPCs, we have
developed a system that simultaneously measures 64 MPPCs with various bias
voltage and temperature. The performance of MPPCs are found to satisfy the
requirement of T2K experiment. In this paper, we present the performance of
17,686 MPPCs measured at Kyoto University.Comment: 15 pages, 14 figure
Photoinduced metallic properties of one-dimensional strongly correlated electron systems
We study photoinduced optical responses of one-dimensional strongly
correlated electron systems. The optical conductivity spectra are calculated
for the ground state and a photoexcited state in the one-dimensional Hubbard
model at half filling by using the exact diagonalization method. It is found
that, in the Mott insulator phase, the photoexcited state has large spectral
weights including the Drude weight below the optical gap. As a consequence, the
spectral weight above the optical gap is largely reduced. These results imply
that a metallic state is induced by photoexcitation. Comparison between the
photoexcited and hole-doped states shows that the photoexcitation is similar to
chemical doping.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
Transient dynamics for sequence processing neural networks
An exact solution of the transient dynamics for a sequential associative
memory model is discussed through both the path-integral method and the
statistical neurodynamics. Although the path-integral method has the ability to
give an exact solution of the transient dynamics, only stationary properties
have been discussed for the sequential associative memory. We have succeeded in
deriving an exact macroscopic description of the transient dynamics by
analyzing the correlation of crosstalk noise. Surprisingly, the order parameter
equations of this exact solution are completely equivalent to those of the
statistical neurodynamics, which is an approximation theory that assumes
crosstalk noise to obey the Gaussian distribution. In order to examine our
theoretical findings, we numerically obtain cumulants of the crosstalk noise.
We verify that the third- and fourth-order cumulants are equal to zero, and
that the crosstalk noise is normally distributed even in the non-retrieval
case. We show that the results obtained by our theory agree with those obtained
by computer simulations. We have also found that the macroscopic unstable state
completely coincides with the separatrix.Comment: 21 pages, 4 figure
- …