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Abstract: We provide a finite-dimensional model of the twisted K -group twisted by
any degree three integral cohomology class of a CW complex. One key to the model is
Furuta’s generalized vector bundle, and the other is a finite-dimensional approximation
of Fredholm operators.

1. Introduction

Since the work of Atiyah and Hirzebruch [2], K -theory has been recognized as a
fundamental notion in topology and geometry. Twisted K -theory is a variant of
K -theory originating from the works of Donovan-Karoubi [10] and Rosenberg [19].
Much focus is on twisted K -theory recently, due to applications, for example, to D-
brane charges ([17,20]), Verlinde algebras [12] and quantum Hall effects [8].

As is well-known, the K -group K (X) of a compact space X admits various formu-
lations. The standard formulation of K (X) uses finite dimensional vector bundles on X .
One can also formulate K (X) by using a C∗-algebra as well as the space of Fredholm
operators. To define twisted K -theory, we usually appeal to the latter two formulations
above, involving some infinite dimensions.

K -theory enjoys numerous applications to topology and geometry because of its
realization by means of vector bundles. To give a similar realization of twisted K -theory
seems to be an interesting problem to be studied not only for better understanding but
also for further applications.

So far, as a partial answer to the problem, twisted vector bundles or bundle gerbe
K -modules [6] are utilized to realize the twisted K -group whose “twisting” satisfies a
condition. The condition is that the degree three integral cohomology class correspond-
ing to the twisting is of finite order. A complete answer to this realization problem, valid
for twistings corresponding to any degree three integral cohomology classes, was known
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by André Henriques. The aim of the present paper is to give another complete answer
by generalizing the following result announced in [15]:

Theorem 1. Let X be a CW complex, P a principal bundle over X whose structure
group is the projective unitary group of a separable Hilbert space of infinite dimen-
sion, and K P (X) the twisted K -group. We write KFP (X) for the homotopy classes of
P-twisted (Z2-graded) vectorial bundles over X. Then there exists a natural isomor-
phism α : K P (X) −→ KFP (X).

The notion of vectorial bundle is a generalization of the notion of vector bundles due
to Mikio Furuta [13]. Vectorial bundles realize the ordinary K -group K (X), and arise
as finite-dimensional geometric objects approximating families of Fredholm operators.
We can think of the approximation as a linear version of the finite-dimensional approx-
imation of the Seiberg-Witten equations [14]. Since K P (X) consists of certain families
of Fredholm operators, a twisted version of vectorial bundles provides a suitable way to
realize twisted K -theory.

As a simple application of Theorem 1, we can generalize some notions of 2-vector
bundles [5,7]. The notion of 2-vector bundles in the sense of Brylinski [7] uses the
category of vector bundles, and a 2-vector bundle of rank 1 reproduces the category of
twisted vector bundles, so that the twisted K -group whose twisting corresponds to a
degree three integral cohomology class of finite order. By using the category of vectorial
bundles instead, we get a proper generalization of Brylinski’s 2-vector bundles. This gen-
eralization reproduces the category of twisted vectorial bundles, and hence the twisted
K -group with any twisting. A similar replacement may generalize 2-vector bundles of
Baas, Dundas and Rognes [5], which they studied in seeking for a geometric model of
elliptic cohomology.

Also, Theorem 1 allows us to construct Chern characters of twisted K -classes in a
purely finite-dimensional manner [16].

In a word, the proof of Theorem 1 is a comparison of cohomology theories: as is well-
known, the twisted K -group K P (X) fits into a certain generalized cohomology theory
K ∗P (X,Y ). The group KFP (X) also fits into a similar cohomology theory KF∗P (X,Y ),
and the homomorphism α : K P (X) → KFP (X) extends to a natural transformation
between these two cohomology theories. Then, appealing to a standard method in alge-
braic topology, we compare these cohomology theories to show their equivalence.

According to the outline of the proof above, this paper is organized as follows.
In Sect. 2, we review a definition of twisted K -theory and a construction of twisted
K -cohomology K ∗P (X,Y ). In Sect. 3, we introduce the notion of (Z2-graded) vecto-
rial bundles and its twisted version. In Sect. 4, we construct the cohomology theory
KF∗P (X,Y ). In Sect. 5, we construct the natural transformation between K ∗P (X,Y ) and
KF∗P (X,Y ). A key to the construction is a finite-dimensional approximation of a family
of Fredholm operators. After a study of the natural transformation, we compare the coho-
mology theories to derive Theorem 1. Finally, in the Appendix, proof of Furuta’s results,
crucial to the present paper, are culled from the Japanese textbook [13] for convenience.

2. Twisted K -Theory

We here review twisted K -cohomology theory, following [3,9] mainly.

2.1. Review of twisted K -theory. Let PU (H) = U (H)/U (1) be the projective unitary
group of a separable Hilbert space H of infinite-dimension. We topologize PU (H) by



Twisted K -Theory and Finite-Dimensional Approximation 865

using the compact-open topology in the sense of [3]. Let F(H) be the set of bounded
linear operators A : H→ H such that A∗A − 1 and AA∗ − 1 are compact operators:

F(H) = {A : H→ H| A∗A − 1, AA∗ − 1 ∈ K(H)}.
Note that F(H) is a subset of the space of Fredholm operators on H. We induce a
topology on F(H) by using the map

F(H) −→ B(H)co × B(H)co ×K(H)norm ×K(H)norm,

A �→ (A, A∗, A∗A − 1, AA∗ − 1),

where B(H)co is the space of bounded linear operators B(H) topologized by the com-
pact-open topology, and K(H)norm is the space of compact operators K(H) topologized
by the usual operator norm. Then F(H) is a representing space for K -theory, and PU (H)
acts continuously on F(H) by conjugation ([3]).

In this paper, the “twist” in twisted K -theory is given by a principal PU (H)-bundle.
For a principal PU (H)-bundle P → X given, the conjugate action gives the associated
bundle P ×Ad F(H)→ X whose fiber is F(H).
Definition 2.1. Let X be a compact Hausdorff space, and P → X a principal PU (H)-
bundle. We define the twisted K -group K P (X) to be the group consisting of fiberwise
homotopy classes of the sections of P ×Ad F(H)→ X:

K P (X) = �(X, P ×Ad F(H))/homotopy,

where the addition in K P (X) is given by fixing an isomorphism H⊕H ∼= H.

Remark 1. As in [3], we can consider a more refined “twist” by introducing a
Z2-grading to the Hilbert space and using unitary transformations of degree 1. However,
the present paper does not cover the case.

Remark 2. In [3], a projective space bundle plays the role of a “twisting”. Since the
structure group of the projective space bundle is PU (H), Definition 2.1 gives the same
twisted K -group as that in [3].

Remark 3. Instead of the compact-open topology, we can also work with the topology
on PU (H) given by the operator norm. In this case, the formulation of twisted K -theory
uses the space of (bounded) Fredholm operators on H equipped with the operator norm
topology, instead of F(H). An advantage of the compact-open topology, other than that
pointed out in [3], is that it simplifies some argument in Subsect. 5.1.

2.2. Review of twisted K -cohomology. We formulate twisted K -cohomology as a cer-
tain generalized cohomology.

We write C for the category of CW pairs: an object in C is a pair (X,Y ) consist-
ing of a CW complex X and its subcomplex Y . A morphism f : (X ′,Y ′) → (X,Y )
is a continuous map f : X ′ → X such that f (Y ′) ⊂ Y . We also write ̂C for the
category of CW pairs equipped with PU (H)-bundles: an object (X,Y ; P) in ̂C con-
sists of a CW pair (X,Y ) ∈ C and a principal PU (H)-bundle P → X . A morphism
( f, F) : (X ′,Y ′; P ′)→ (X,Y ; P) consists of a morphism f : (X ′,Y ′)→ (X,Y ) in C
and a bundle map F : P ′ → P covering f . A CW complex X equipped with a principal
PU (H)-bundle P → X will be identified with (X,∅; P) ∈ ̂C.
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Let (X,Y ) ∈ C be a CW pair and P → X a principal PU (H)-bundle. The support
of a section A ∈ �(X, P ×Ad F(H)) is defined to be the closure of the set consisting of
the points at which A is not invertible:

SuppA = {x ∈ X | Ax : H→ H is not invertible}.
We define K P (X,Y ) by using sections A ∈ �(X, P×Ad F(H)) such that SuppA∩Y =
∅. In K P (X,Y ), two sections A0 and A1 are identified if they are connected by a sec-
tion Ã ∈ �(X × I, (P × I ) ×Ad F(H)) such that SuppÃ ∩ (Y × I ) = ∅, where I
is the interval [0, 1]. We then define the twisted K -cohomology groups K−n

P (X,Y ) as
follows:

K−n
P (X,Y ) =

{

K P×I n (X × I n,Y × I n ∪ X × ∂ I n), (n ≥ 0),

K n
P (X,Y ), (n < 0).

Clearly, a morphism ( f, F) : (X ′,Y ′; P ′) → (X,Y ; P) induces a homomorphism
( f, F)∗ : K n

P (X,Y )→ K n
P ′(X

′,Y ′) for all n ∈ Z. In the case of P ′ = f ∗P , we simply
write f ∗ : K n

P (X,Y ) → K n
f ∗P (X

′,Y ′) for the homomorphism induced from ( f, ̂f ),

where ̂f : f ∗P → P is the canonical bundle map covering f .
Now, we summarize basic properties of twisted K -cohomology theory ([3,9,11]):

Proposition 2.2. The assignment of {K n
P (X,Y )}n∈Z to (X,Y ; P) ∈ ̂C has the following

properties:

(1) Homotopy axiom. If ( fi , Fi ) : (X ′,Y ′; P ′)→ (X,Y ; P), (i = 0, 1) are homotopic,
then the induced homomorphisms coincide: ( f0, F0)

∗ = ( f1, F1)
∗.

(2) Excision axiom. For subcomplexes A, B ⊂ X, the inclusion map induces the
isomorphism:

K n
P|A∪B

(A ∪ B, B) ∼= K n
P|A(A, A ∩ B). (n ∈ Z).

(3) Exactness axiom. There is the natural long exact sequence:

· · · → K n−1
P|Y (Y )

δn−1→ K n
P (X,Y )→ K n

P (X)→ K n
P|Y (Y )

δn→ · · · .

(4) Additivity axiom. For a family {(Xλ,Yλ; Pλ)}λ∈� in ̂C, the inclusion maps Xλ →
∐

λ Xλ induce the natural isomorphism:

K−n
∐

λ Pλ
(
∐

λXλ,
∐

λYλ) ∼=
∏

λ

K−n
Pλ
(Xλ,Yλ), (n ∈ Z).

(5) Bott periodicity. There is the natural isomorphism:

βn : K n
P (X,Y ) −→ K n−2

P (X,Y ), (n ∈ Z).

The homotopy axiom and the additivity axiom are clear. The excision axiom is due to
the fact that the set of invertible operators in F(H) is contractible [3]. The periodicity is
a consequence of the homotopy equivalence F(H) 
 	2F(H), ([3,4]). The exactness
axiom follows essentially from the cofibration sequence:

· · · ←− 
2Y ←− 
(X/Y )←− 
X ←− 
Y ←− X/Y ←− X ←− Y,
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where 
 stands for the reduced suspension. Noting the homotopy equivalence 
n

(X
∐

pt) 
 X × I n/(Y × I n ∪ X × ∂ I n), we obtain the non-positive part of the long
exact sequence for a pair (X,Y ) in a way similar to that used in [1]. Then we get the
positive part by using the Bott periodicity. A similar construction of the exact sequence
will be performed in Subsect. 4.3 in our finite-dimensional model.

Remark 4. The definition of K P (X,Y ) in [9] is equivalent to that in this paper, because
of the definition of the support of A ∈ �(X, P ×Ad F(H)). The definition of K−n

P (X)
in [3,9], which utilizes sections of the bundle P×Ad 	

nF(H) over X , is also equivalent
to our definition.

3. Vectorial Bundle

We here introduce Furuta’s generalized vector bundles [13] as vectorial bundles. Our for-
mulation differs slightly from the original formulation in [13]. Twisted vectorial bundles
are also introduced in this section.

3.1. Vectorial bundle.

Definition 3.1. Let X be a topological space. For a subset U ⊂ X, we define the cate-
gory HF(U ) as follows. An object in HF(U ) is a pair (E, h) consisting of a Z2-graded
Hermitian vector bundle E → U of finite rank and a Hermitian map h : E → E of
degree 1. The homomorphisms in HF(U ) are defined by

HomHF(U )((E, h), (E ′, h′)) = {φ : E → E ′| degree 0, φh = h′φ}/ �,

where � stands for an equivalence relation. That φ � φ′ means:

For each point x ∈ U, there are a positive number µ > 0 and an open subset
V ⊂ U containing x such that: for all y ∈ V and ξ ∈ (E, h)y,<µ, we have
φ(ξ) = φ′(ξ).

In the above, we put

(E, h)y,<µ =
⊕

λ<µ

Ker(h2
y − λ) =

⊕

λ<µ

{ξ ∈ Ey | h2
yξ = λξ}.

By abuse of notation, we just write φ for the equivalence class [φ] of a map φ :
(E, h)→ (E ′, h′) in HomHF(U )((E, h), (E ′, h′)). For a subset V ⊂ U , the restriction
(E, h) �→ (E, h)|V defines a functor HF(U ) → HF(V ), which composes properly
for a smaller subset in V .

Definition 3.2. For a space X, we define the category KF(X) as follows.

(1) An object (U , (Eα, hα), φαβ) in KF(X) consists of an open cover U = {Uα}α∈A of
X, objects (Eα, hα) in HF(Uα), and homomorphisms φαβ : (Eβ, hβ)→ (Eα, hα)
in HF(Uαβ) such that:

φαβφβα = 1 in HF(Uαβ);
φαβφβγ = φαγ in HF(Uαβγ ),

where Uαβ = Uα ∩Uβ and Uαβγ = Uα ∩Uβ ∩Uγ as usual. We call an object in
KF(X) a vectorial bundle over X.
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(2) A homomorphism ({U ′
α′ }, (E ′α′ , h′

α′), φ
′
α′β ′) → ({Uα}, (Eα, hα), φαβ) consists of

homomorphisms ψαα′ : (E ′α′ , h′
α′) → (Eα, hα) in HF(Uα ∩ U ′

α′) such that the
following diagrams commute in HF(Uα ∩ U ′

α′ ∩ Uβ ′) and HF(Uα ∩ Uβ ∩ U ′
α′),

respectively:

E ′
α′

ψαα′ �� Eα

E ′
β ′

ψαβ′

����������
φ′
α′β′

��
Eα

E ′
β ′

ψαβ′
����������

ψββ′
�� Eβ

φαβ

��

An isomorphism of vectorial bundles is a homomorphism in KF(X) admitting an
inverse. Vectorial bundles E0 and E1 over X are said to be isomorphic if there exists an
isomorphism E0 → E1. To indicate the relationship, we will write E0 ∼= E1. Vectorial
bundles E0 and E1 are said to be homotopic if there exists Ẽ ∈ KF(X × I ) such that
Ẽ|X×{i} ∼= Ei for i = 0, 1. We will write [E] for the homotopy class of a vectorial bundle
E ∈ KF(X).
Lemma 3.3 ([13]). Let KF(X) be the homotopy classes of vectorial bundles on X. Then
KF(X) is an abelian group.

Proof. The addition in KF(X) is given by the direct sum of vector bundles, and the
inverse by reversing the Z2-grading in vector bundles. Then the present lemma will be
clear, except for the consistency of the definition of the inverse. To see it, we define
(F, η) ∈ HF(I ) by taking F = F0 ⊕ F1 to be Fi = I × C and η : F → F to be

η =
(

0 t
t 0

)

. We multiply (E, h) ∈ HF(X) by (F, η) to get (E⊗ F, h⊗ idF + ε⊗η) ∈
HF(X × I ), where ε : E → E acts on the even part E0 of E = E0 ⊕ E1 by 1 and the
odd part E1 by −1. Then, as a homotopy, the object above connects the trivial object in
HF(X) with (E, h)⊕ (E∨, h∨), where (E∨, h∨) stands for (E, h) with its Z2-grading
reversed. We can readily globalize this construction, so that the inverse is well-defined.

��
For a Z2-graded vector bundle E over X , we can construct a vectorial bundle over X

by taking an open cover U of X to be X itself and a Hermitian map h : E → E of degree
1 to be h = 0. This construction of vectorial bundles induces a well-defined homomor-
phism K (X) → KF(X). The following result of Furuta will be used in Subsect. 5.3,
and its proof is included in the Appendix.

Theorem 3.4 ([13]). If X is compact, then K (X)→ KF(X) is bijective.

Remark 5. As Definition 3.1 works without Z2-grading, the vectorial bundles in Defini-
tion 3.2 should be called Z2-graded vectorial bundles. However, we drop the adjective
“Z2-graded”, since ungraded ones will not appear in this paper.

3.2. Twisted vectorial bundle.

Definition 3.5. Let X be a topological space, P → X a principal PU (H)-bundle, and
U ⊂ X a subset.
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(a) We define the category P(U ) as follows. The objects in P(U ) consist of sections
s : U → P|U . The morphisms in P(U ) are defined by

HomP(U )(s, s′) = {g : U → U (H)| s′π(g) = s},
where π : PU (H) → U (H) is the projection. The composition of morphisms is
defined by the pointwise multiplication.

(b) We define the category HF P (U ) as follows. The objects in HF P (U ) are the same
as those in P(U )×HF(U ):

Obj(HF P (U )) = Obj(P(U ))× Obj(HF(U )).
The homomorphisms in HF P (U ) are defined by:

HomHF P (U )((s, (E, h)), (s′, (E ′, h′)))
= HomP(U )(s, s′)× HomHF(U )((E, h), (E ′, h′))/ ∼,

where the equivalence relation ∼ identifies (g, φ) with (gζ, φζ ) for any U (1)-val-
ued map ζ : U → U (1).

Definition 3.6. Let X be a paracompact space, and P → X a principal PU (H)-bundle.
We define the category KF P (X) as follows:

(1) An object (U , Eα,�αβ) in KF(X) consists of an open cover U = {Uα}α∈A of X,
objects Eα in HF P (Uα), and homomorphisms�αβ : Eβ → Eα in HF P (Uαβ) such
that:

�αβ�βα = 1 in HF P (Uαβ);
�αβ�βγ = �αγ in HF P (Uαβγ ).

We call an object in the category KF P (X) a twisted vectorial bundle over X
twisted by P, or a P-twisted vectorial bundle over X.

(2) A homomorphism ({U ′
α′ }, E ′α′ ,�′α′β ′) → ({Uα}, Eα,�αβ) consists of homomor-

phisms �αα′ : E ′
α′ → Eα in HF P (Uα ∩ U ′

α′) such that the following diagrams
commute in HF P (Uα ∩U ′

α′ ∩Uβ ′) and HF P (Uα ∩Uβ ∩U ′
α′), respectively:

E ′
α′

�αα′ �� Eα

E ′
β ′

�αβ′

����������
�′
α′β′

��
Eα

E ′
β ′

�αβ′
���������

�ββ′
�� Eβ

�αβ

��

It may be helpful to give a more explicit description than that in the definition above.
We can describe a twisted vectorial bundle as the data

(U , sα, gαβ, (Eα, hα), φαβ)

consisting of:

• an open cover U = {Uα} of X ;
• local sections sα : Uα → P|Uα ;
• lifts gαβ : Uαβ → U (H) of the transition functions ḡαβ ;
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• Z2-graded Hermitian vector bundles Eα → Uα of finite rank;
• Hermitian maps hα : Eα → Eα of degree 1;
• maps φαβ : Eβ |Uαβ → Eα|Uαβ such that hαφαβ = φαβhβ and:

φαβφβα � 1 on Uαβ;
φαβφβγ � zαβγ φαγ on Uαβγ .

In the above, the transition function ḡαβ : Uαβ → PU (H) is defined by sα ḡαβ = sβ .
A lift gαβ of ḡαβ means a function gαβ : Uαβ → U (H) such that π ◦ gαβ = ḡαβ . The
function zαβγ : Uαβγ → U (1) is defined by gαβgβγ = zαβγ gαγ .

Note that the data sα, gαβ of P are crucial in considering isomorphisms classes of
twisted vectorial bundles.

Definition 3.7. We denote by KFP (X) the homotopy classes of twisted vectorial bundles
over X twisted by P.

The notion of homotopies of P-twisted vectorial bundles over X is formulated by
using (P × I )-twisted vectorial bundles over X × I . As in the case of KF(X), the
set KFP (X) gives rise to an abelian group. Clearly, if P is trivial, then a trivialization
P ∼= X × PU (H) induces an isomorphism K FP(X) ∼= K F(X).

Remark 6. Consider the following property of a topological space X :

(L) For any principal PU (H)-bundle P → X and an open cover of X , there is a refine-
ment U = {Uα} of the cover such that we can find local trivializations sα : Uα →
P|Uα and lifts gαβ of the transition functions ḡαβ .

As P is locally trivial, the existence of lifts gαβ matters only. In general, paracompact
spaces have the property (L). Thus, through this property, the paracompactness assump-
tion in Definition 3.6 ensures that KFP (X) is non-empty.

Remark 7. The assignment of P(U ) to each open set U ⊂ X gives a U (1)-gerbe over X ,
where U (1) is the sheaf of germs of U (1)-valued functions. In general, for a U (1)-gerbe
G, we can construct a category KFG(X) similar to KF P (X). On a manifold X , the
assignment U → KFG(U ) becomes a stack and gives the generalization of Brylinski’s
2-vector bundle mentioned in Sect. 1.

4. Cohomology Theory KF

By means of KFP (X), we construct in this section a certain generalized cohomology
theory similar to twisted K -cohomology theory. Then we describe and prove some basic
properties.

4.1. Construction. Let X be a paracompact space, and P → X a principal PU (H)-
bundle. We define the support of a twisted vectorial bundle

E = (U , sα, gαβ, (Eα, hα), φαβ) ∈ KF P (X)

to be:

SuppE = {x ∈ X | (hα)x is not invertible for some α }.
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For a (closed) subspace Y ⊂ X , we denote by KF P (X,Y ) the full subcategory in
KF P (X) consisting of objects E such that SuppE∩Y = ∅. Then we define KFP (X,Y )
to be the homotopy classes of objects in KF P (X,Y ), where homotopies are given by
objects in KF P×I (X × I,Y × I ). For n ≥ 0, we put:

KF−n
P (X,Y ) = KFP×I n (X × I n,Y × I n ∪ X × ∂ I n).

We also put KF1
P (X,Y ) = KF−1

P (X,Y ). By means of the pull-back, a morphism
( f, F) : (X ′,Y ′; P ′) → (X,Y ; P) in ̂C clearly induces a homomorphism ( f, F)∗ :
KFn

P (X,Y )→ KFn
P ′(X

′,Y ′). In the case of P ′ = f ∗P and F = ̂f , we will write f ∗
for the induced homomorphism.

Proposition 4.1. The assignment of {KFn
P (X,Y )}n≤1 to (X,Y ; P) ∈ ̂C has the follow-

ing properties:

(1) Homotopy axiom. If ( fi , Fi ) : (X ′,Y ′; P ′)→ (X,Y ; P), (i = 0, 1) are homotopic,
then the induced homomorphisms coincide: ( f0, F0)

∗ = ( f1, F1)
∗.

(2) Excision axiom. For subcomplexes A, B ⊂ X, the inclusion map induces the iso-
morphism:

KFn
P|A∪B

(A ∪ B, B) ∼= KFn
P|A(A, A ∩ B).

(3) “Exactness” axiom. There is the natural complex of groups:

· · · → KF−1
P|Y (Y )

δ−1→ KF0
P (X,Y )→ KF0

P (X)→ KF0
P|Y (Y )

δ0→ KF1
P (X,Y ).

This complex is exact except at the term KF0
P|Y (Y ).

(4) Additivity axiom. For a family {(Xλ,Yλ; Pλ)}λ∈� in ̂C, the inclusion maps Xλ →
∐

λ Xλ induce the natural isomorphism:

KF−n
∐

λ Pλ
(
∐

λXλ,
∐

λYλ) ∼=
∏

λ

KF−n
Pλ
(Xλ,Yλ).

The homotopy axiom and the additivity axiom follow directly from the definition
of KFP (X,Y ). The excision axiom and the “exactness” axiom will be shown in the
following subsections.

Remark 8. The Bott periodicity for KF−n
P (X,Y ) is not yet established at this stage. This

is the reason that the “exactness” axiom in Proposition 4.1 is formulated partially. At
the end, the periodicity will turn out to hold, and we will obtain the complete exactness
axiom.

Remark 9. A generalization of KFP (X) is given by incorporating actions of Clifford-
algebra bundles into vectorial bundles. Another generalization is to use real vector bun-
dles with inner product instead of Hermitian vector bundles. These generalizations also
satisfy properties similar to those in Proposition 4.1.



872 K. Gomi

4.2. Excision axiom. We here prove the excision axiom in Proposition 4.1. For untwisted
KF(X,Y ), the excision theorem is shown in [13]. The following argument is essentially
the same as that used in the untwisted case.

Lemma 4.2. (Meyer-Vietoris construction) Let X be a paracompact space, P → X
a principal PU (H)-bundle, and U, V ⊂ X open subsets such that U ∩ V �= ∅.
If E ∈ KF P|U (U ) and F ∈ KF P|V (V ) are isomorphic on U ∩ V , then there is
G ∈ KF P|U∪V (U ∪ V ) such that G|U ∼= E and G|V ∼= F.

Proof. Suppose that E = (U , Eα,�αα′) and F = (V,Fβ,�ββ ′). We can construct the
object G = (W,Gγ , ϒγγ ′) as follows. We let W be the open cover of U ∪ V consisting
of the open sets belonging to U or V . The object Gγ is Eα or Fβ . Then �αα′ , �ββ ′ and
the data of the isomorphism E|U∩V ∼= F|U∩V together give the morphisms ϒγγ ′ . ��
Proposition 4.3. (Excision axiom) Let X be a paracompact space, and P → X a prin-
cipal PU (H)-bundle. For an open set U and a closed set Y such that U ⊂ Y ⊂ X, the
inclusion i : X −U → X induces the isomorphism:

i∗ : KFP (X,Y )
∼=−→ KFP|X−U (X −U,Y −U ).

Proof. It suffices to construct the inverse of i∗. Suppose that we are given
E ∈ KF P|X−U (X − U,Y − U ). We put V = X − Y and W = X − SuppE. We
let O = (U , sα, gαβ, (Eα, hα), φαβ) ∈ KF P|W (W ) be an object such that Eα , hα and
φαβ are trivial. Note that O represents 0 ∈ KFP|W (W ). Clearly, the support of E does not
intersect V ∩W . Thus, there is a natural isomorphism E|V∩W ∼= O|V∩W , so that Lemma
4.2 provides us an object Ẽ ∈ KF P (X) such that SuppẼ ∩ Y = ∅ and Ẽ|X−U ∼= E.
Note that the construction in Lemma 4.2 is natural. Hence the construction of Ẽ above
behaves naturally with respect to the pull-back. Consequently, the assignment E �→ Ẽ

induces a well-defined map KFP|X−U (X−U,Y −Y )→ KFP (X,Y ), giving the inverse
to i∗. ��

Now, the excision axiom in Proposition 4.1 follows from the proposition above: Set-
ting X = A∪B, Y = B and U = B−A∩B, we get KFP (A∪B, B) ∼= KFP|A(A, A∩B),
which leads to K Fn

P (A ∪ B, B) ∼= K Fn
P|A(A, A ∩ B), (n < 0).

4.3. Exactness axiom. We show the “exactness” axiom in Proposition 4.1 in a way
similar to that used in [1]. To define the connecting homomorphism δ−n , we begin with:

Lemma 4.4. Let X be a paracompact space, P → X a principal PU (H)-bundle, and
Z ⊂ Y ⊂ X subspaces. If Y → X is a cofibration, then we have the exact sequence:

KFP (X,Y )
i∗−→ KFP (X, Z)

j∗−→ KFP|Y (Y, Z),

where i : (X, Z)→ (X,Y ) and j : (Y, Z)→ (X,Y ) are the inclusion maps.

Proof. Clearly, j∗i∗ = 0. Suppose that [E] ∈ KFP (X, Z) is such that j∗([E]) = 0.
This means that there is a homotopy F̃ ∈ KF P×I (Y × I, Z × I ) connecting E|Y with
a trivial object O on Y . Then we have an object

G ∈ KF P×[0,1](X ∪ {0} ∪ Y × [0, 1], Z × [0, 1])
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such that G|X×{0} ∼= E and G|Y×{1} ∼= O. We can construct such an object G by
applying Lemma 4.2 to F̃|Y×(0,1] and the pull-back of E under the projection X × {0} ∪
Y × [0, 1)→ X × {0}. Now, because Y → X is a cofibration, we have a map η making
the following diagram commutative:

X × {0} ∪ Y × [0, 1] � � ��

id
��

X × [0, 1]
η

��� � � � � � �

X × {0} ∪ Y × [0, 1]

Then H = η(·, 1)∗G defines [H] ∈ KFP (X,Y ). Since the homotopy H̃ = η∗G ∈
KF P×I (X × I, Z × I ) connects G|X×{0} ∼= E with H, we have i∗([H]) = [E]. ��

Lemma 4.5. For (X,Y ; P) ∈ ̂C, the group KF−n+1
P (X,Y ) is isomorphic to

KFP×I n (X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I,

Y × I n−1 × {1} ∪ X × ∂ I n−1 × I ).

Proof. Recall KF−n+1
P (X,Y ) = KFP×I n−1(X × I n−1,Y × I n−1 ∪ X × ∂ I n−1) by

definition. Consider the following maps:

(X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I,
Y × I n−1 × {1} ∪ X × ∂ I n−1 × I )

��

i
��

(X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I,
(Y × I n−1 ∪ X × ∂ I n−1)× I )

p

��
(X × I n−1 × {0}, (Y × I n−1 ∪ X × ∂ I n−1)× {0}),��

j
��

where i and j are induced from the inclusions, and p from the projection. The map
p′ = p ◦ i is also induced from the projection. We will prove below that p′∗ provides
us the isomorphism in the present lemma. For the aim, we show:

(a) p′∗ is injective;
(b) p∗ is surjective; and
(c) i∗ is surjective.

For (a), we use the map H given by the homotopy extension property:

X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I � � ��

id
��

X × I n−1 × I

H��� � � � � � � � � �

X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I.
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If we put h(·) = H(·, 1), then p′ ◦ h is homotopic to the identity of X × I n−1 relative to
Y × I n−1∪ X ×∂ I n−1, so that p′∗ is injective. For (b), it is enough to apply the excision
axiom. For (c), we define X ⊃ Y ⊃ Z as follows:

X = X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I,

Y = (Y × I n−1 ∪ X × ∂ I n−1)× I,

Z = Y × I n−1 × {1} ∪ X × ∂ I n−1 × I.

Lemma 4.4 gives the exact sequence:

KFP×I n (X ,Y) −−−−→ KFP×I n (X ,Z) −−−−→ KFP×I n (Y,Z),
in which the first map coincides with i∗. Hence the surjectivity of i∗ will follow from
KFP×I n (Y,Z) = 0. To see this vanishing, we let (Z,Z) → (Y,Z) be the inclu-
sion, and (Y,Z)→ (Z,Z) the map given by composing the following projection and
inclusion:

Y −−−−→ (Y × I n−1 ∪ X × ∂ I n−1)× {1} −−−−→ Z.
These maps give homotopy equivalences between (Y,Z) and (Z,Z), so that we have
KFP×I n (Y,Z) ∼= KFP×I n (Z,Z) = 0. ��
Lemma 4.6. For (X,Y ; P) ∈ ̂C, the group KF−n

P|Y (Y ) is isomorphic to

KFP×I n (X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I,

X × I n−1 × {0} ∪ Y × I n−1 × {1} ∪ X × ∂ I n−1 × I ).

Proof. The present lemma straightly follows from the excision axiom. ��
Now, for (X,Y ; P) ∈ ̂C, we define the natural homomorphism

δ−n : KF−n
P|Y (Y ) −→ KF−n+1

P (X,Y ), (n ≥ 1)

to be the composition of the isomorphism in Lemma 4.6, the following homomorphism
induced from the inclusion map:

KFP×I n (X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I,
X × I n−1 × {0} ∪ Y × I n−1 × {1} ∪ X × ∂ I n−1 × I )

⏐

⏐

	

KFP×I n (X × I n−1 × {0} ∪ (Y × I n−1 ∪ X × ∂ I n−1)× I,
Y × I n−1 × {1} ∪ X × ∂ I n−1 × I ),

and the isomorphism in Lemma 4.5.

Proposition 4.7. (Exactness axiom) For (X,Y ; P) ∈ ̂C and n ≥ 0, we have the follow-
ing exact sequences:

(a) KF−n
P (X,Y ) −→ KF−n

P (X) −→ KF−n
P|Y (Y ).

(b) KF−n−1
P|Y (Y )

δ−n−1−→ KF−n
P (X,Y ) −→ KF−n

P (X).

(c) KF−n−1
P (X) −→ KF−n−1

P|Y (Y )
δ−n−1−→ KF−n

P (X,Y ).
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In the above, the maps KF−n
P (X,Y ) → KF−n

P (X) and KF−n
P (X) → KF−n

P|Y (Y ) are
induced from the inclusions (X,∅)→ (X,Y ) and Y → X, respectively.

Proof. We define X ⊃ Y ⊃ Z to be X = X × I n , Y = Y × I n ∪ X × ∂ I n and
Z = X × ∂ I n . Then we consider the diagram:

KFP×I n (X ,Y) −−−−→ KFP×I n (X ,Z) −−−−→ KFP×I n (Y,Z)
∥

∥

∥

∥

∥

∥

⏐

⏐

	

KF−n
P (X,Y ) −−−−→ KF−n

P (X) −−−−→ KF−n
P|Y (Y ),

where the upper row is the exact sequence in Lemma 4.4, the lower row is the sequence
in (a), and the third vertical map is the isomorphism in the excision axiom. The diagram
above commutes, so that (a) is proved. We can prove (b) and (c) in the same way. For
(b), we use X ⊃ Y ⊃ Z given by:

X = X × I n × {0} ∪ (Y × I n ∪ X × I n)× I,

Y = X × I n × {0} ∪ Z,
Z = Y × I n × {1} ∪ X × ∂ I n × I.

For (c), we use X ⊃ Y ⊃ Z given by

X = X × I n × [−1, 0] ∪ X × I n × {0} ∪ Y × I n × [0, 1],
Y = X × I n × {−1} ∪ X × I n × {0} ∪ Y × I n × [0, 1] ∪ X × ∂ I n × [−1, 0],
Z = X × I n × {−1} ∪ Y × I n × {1} ∪ Y × ∂ I n × [0, 1] ∪ X × ∂ I n × [−1, 0].

Then we obtain (b) and (c) by identifying the groups in the exact sequence in Lemma
4.4, and checking the compatibility of the identifications. The details of the check are
left to the reader (cf. [1]). ��

Finally, to complete the proof of the “exactness” axiom in Proposition 4.1, we extend
the exact sequence obtained so far in Proposition 4.7 as a complex. For the purpose, we
let F = F0 ⊕ F1 be the Z2-graded Hermitian vector bundle over the unit disk D2 ⊂ C

defined by Fi = D2 × C. We also let T : F → F be the Hermitian map of degree 1

given by Tz =
(

0 z̄
z 0

)

. As is known [1], the “Thom class” (F, T ) represents a generator

of K (D2, S1) ∼= Z.
For a moment, let X be a paracompact space and P → X a principal PU (H)-bundle.

Multiplying E = ({Uα}α∈A, sα, gαβ, (Eα, hα), φαβ) ∈ KF P (X) and (F, T ), we get the
following object β(E) in KF P×D2(X × D2, X × S1):

({Uα × D2}α∈A, π∗X sα, π
∗
X gαβ, (π

∗
X Eα⊗π∗D2 F, π∗X hα⊗̂π∗D2 T ), π∗Xφαβ ⊗ 1),

where πX and πD2 are the projections from X × D2 to X and D2 respectively. The
Hermitian map π∗X hα⊗̂π∗D2 T of degree 1, acting on the Z2-graded tensor product
π∗X Eα⊗π∗D2 F , is given by:

π∗X hα⊗̂π∗D2 T = π∗X hα ⊗ 1 + ε ⊗ π∗D2 T,
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where ε is 1 on the even part ofπ∗X Eα , and−1 on the odd part. The assignment E �→ β(E)

gives rise to a functor, and induces a natural homomorphism:

β : KFP (X) −→ KF−2
P (X) = KFP×D2(X × D2,Y × S1).

Now, we complete the proof of the “exactness” axiom in Proposition 4.1:

Proposition 4.8. For (X,Y ; P) ∈ ̂C, we define δ0 : KF0
P|Y (Y ) → KF1

P (X,Y ) to be
δ0 = δ−2 ◦ β. Then the following maps compose to give the trivial map, i.e. δ0 ◦ i∗ = 0.

KF0
P (X)

i∗−−−−→ KF0
P|Y (Y )

δ0−−−−→ KF1
P (X,Y ).

Proof. Notice the commutative diagram:

KF0
P (X)

i∗−−−−→ KF0
P|Y (Y )

δ0−−−−→ KF1
P (X,Y )

β

⏐

⏐

	

⏐

⏐

	
β

∥

∥

∥

KF−2
P (X)

i∗−−−−→ KF−2
P|Y (Y )

δ−2−−−−→ KF−1
P (X,Y ).

Now, Proposition 4.7 (c) completes the proof. ��

5. Finite-Dimensional Approximation

In this section, we construct a natural transformation between K ∗P (X,Y ) and KF∗P (X,Y ).
The key to the construction is a notion of a finite-dimensional approximation of a family
of Fredholm operators. We then study some properties of the natural transformation to
prove our main theorem (Theorem 5.13).

5.1. Approximation of family of Fredholm operators. First of all, we introduce some
notations: let Ĥ be the Z2-graded Hilbert space Ĥ = H ⊕H, and F(Ĥ) the space of
self-adjoint bounded operators on Ĥ of degree 1 whose square differ from the identity
by compact operators:

F(Ĥ) = { Â : Ĥ→ Ĥ| bounded, self-adjoint, degree 1, Â2 − 1 ∈ K(Ĥ)}.

We identify F(H) with F(Ĥ) through the assignment A �→ Â =
(

0 A∗
A 0

)

.

For A ∈ F(H), we write ρ( Â2) for the resolvent set of the operator Â2, and σ( Â2) =
C−ρ( Â2) for the spectrum set. Ifµ is such that 0 < µ < 1, then σ( Â2)∩[0, µ) consists
of a finite number of eigenvalues, since Â2 − 1 is compact. In particular, corresponding
eigenspaces are finite-dimensional, and so is the following direct sum:

(Ĥ, Â)<µ =
⊕

λ<µ

Ker( Â2 − λ) =
⊕

λ<µ

{ξ ∈ Ĥ| Â2ξ = λξ}.

The purpose of this subsection is to establish:
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Proposition 5.1. Let X be a topological space, and A : X → F(H) a continuous map.
For an open set U ⊂ X and a number µ ∈ (0, 1) ∩ ⋂

x∈U ρ( Â
2
x ) given, the family

of vector spaces
⋃

x∈U (Ĥ, Âx )<µ ⊂ U × Ĥ gives rise to a (finite rank, Z2-graded,
Hermitian) vector bundle over U.

The restriction of Âx to (Ĥ, Âx )<µ approximates the original family { Âx }.
Notice that the next lemma ensures the hypothesis in the proposition:

Lemma 5.2. Let A : X → F(H) be a continuous map. For each point x0 ∈ X and a
number µ ∈ ρ( Â2

x0
), there is an open neighborhood U of x0 such that:

µ ∈
⋂

x∈U

ρ( Â2
x ).

Proof. This lemma follows from the following facts: (i) the map X → B(Ĥ)norm,
(x �→ Â2

x − µ) is continuous; (ii) the operator Â2
x0
− µ is invertible; and (iii) invertible

bounded operators on Ĥ form an open subset in B(Ĥ)norm. ��
For the proof of Proposition 5.1, we show some lemmas.

Lemma 5.3. Let U and µ be as in Proposition 5.1. For each point x0 ∈ U, there exists
an open neighborhood V ⊂ U of x0 such that:

dim(Ĥ, Âx )<µ = dim(Ĥ, Âx0)<µ < +∞
for all x ∈ V .

Proof. Because Â2
x0
− 1 is compact, (Ĥ, Âx0)<µ is finite-dimensional. We put

r = dim(Ĥ, Âx0)<µ. Let λ1(x) ≤ λ2(x) ≤ · · · denote eigenvalues of Â2
x , where each

eigenvalue is included as many times as the dimension of its eigenspace. As is known,
λk(x) is a continuous function in x , because of the expression:

λk(x) = sup
E⊂H

dimE=k−1

inf
u∈E⊥−{0}

〈u, Â2
x u〉

|u|2 .

We choose ε so as to be 0 < 2ε < min{µ− λr (x0), λr+1(x0)−µ}, and define the open
set V such that x0 ∈ V ⊂ U to be:

V =
r+1
⋂

i=1

{x ∈ U | |λi (x)− λi (x0)| < ε}.

For all x ∈ V , we have λr (x) < µ < λr+1(x), so that dim(Ĥ, Âx )<µ = r . ��
Lemma 5.4. Let U and µ be as in Proposition 5.1. The orthogonal projections πx :
Ĥ→ Ĥ onto (Ĥ, Â2

x )<µ constitute the continuous map

π = {πx }x∈U : U −→ B(H)norm.
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Proof. It suffices to prove that, for a point x0 ∈ U , we have ‖πx−πx0‖ → 0 as x → x0.
For this aim, we choose ε and V as in the proof of Lemma 5.3. If x ∈ V , then πx has
the expression:

πx = 1

2π i

∫

C
R(z; Â2

x )dz,

where R(z; Â2
x ) = (z − Â2

x )
−1 is the resolvent, and C is a counterclockwisely oriented

circle in C such that: its center lies on the real axis; and the open disks B(λi (x0); 2ε),
(i = 1, . . . , r ) are inside C , but B(λr+1(x0); 2ε) is outside. Notice ε < |z − λ| for
(z, λ) ∈ C ×⋃

x∈V σ( Â
2
x ). Thus, for (z, x) ∈ C × V , we have:

‖R(z; Â2
x )‖ = sup

u �=0

‖R(z; Â2
x )u‖

‖u‖ = sup
v �=0

‖v‖
‖(z − Â2

x )v‖
= 1

infv �=0
‖(z− Â2

x )v‖‖v‖
<

1

ε
.

Now, thanks to the integral expression ofπx , we get a constant M such that ‖πx−πx0‖ ≤
M‖ Â2

x − Â2
x0
‖ for x ∈ V . Hence ‖πx − πx0‖ → 0 as x → x0. ��

Lemma 5.5. Let U and µ be as in Proposition 5.1. For x0 ∈ U, there is an open neigh-
borhood W ⊂ U of x0 such that: the projection p : Ĥ → (Ĥ, Âx0)<µ induces an
isomorphism (Ĥ, Âx )<µ ∼= (Ĥ, Âx0)<µ for all x ∈ W .

Proof. Let F⊥ be the orthogonal complement of F = (Ĥ, Âx0)<µ. We write p⊥ : Ĥ→
F⊥ for the projection, and i⊥ : F⊥ → Ĥ for the inclusion. The operator π⊥x = 1− πx

is apparently Fredholm, and x �→ π⊥x is norm continuous by Lemma 5.4. Thus, in the
same way as that used in the appendix of [1], we can find an open neighborhood V ′ of
x0 such that: the map p⊥π⊥x i⊥ : F⊥ → F⊥ is bijective for all x ∈ V ′. Now, by the
map of exact sequences:

0 −−−−→ F⊥ i⊥−−−−→ Ĥ p−−−−→ F −−−−→ 0

p⊥π⊥x i⊥
⏐

⏐

	

⏐

⏐

	p⊥π⊥x
⏐

⏐

	

0 −−−−→ F⊥ F⊥ −−−−→ 0 −−−−→ 0,

we see that p induces an isomorphism Ker p⊥π⊥x ∼= F for x ∈ V ′. Note that
Ker p⊥π⊥x ⊃ Kerπ⊥x = (Ĥ, Âx )<µ. By Lemma 5.3, the dimension of (Ĥ, Âx )<µ is
equal to that of F = (Ĥ, Âx0)<µ, provided that x ∈ V . Thus, p induces an isomor-
phism (Ĥ, Âx )<µ ∼= (Ĥ, Âx0)<µ for all x ∈ W = V ∩ V ′. ��
Proof of Proposition 5.1. It suffices to see that the family

⋃

x∈U (Ĥ, Âx )<µ is locally
trivial. We consider the open neighborhood W of a point x0 ∈ U in Lemma 5.5. Then,
on W , the map id × p : W × H → W × (Ĥ, Âx0)<µ induces a local trivialization
⋃

x∈W (Ĥ, Âx )<µ→ W × (Ĥ, Âx0)<µ. ��
Remark 10. Instead of F(H), we can use the space of Fredholm operators with the norm
topology to obtain the same claim as Proposition 5.1. A key to this case is that 0 is a
discrete spectrum of a non-invertible Fredholm operator.
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5.2. Natural transformation. Let X be a paracompact space, and P → X a principal
PU (H)-bundle. We construct a natural homomorphism:

α : K P (X) −→ KFP (X)

as follows: suppose that a section A ∈ �(X, P ×Ad F(H)) is given. We choose an open
cover U = {Uα}x∈A such that there are local sections sα : Uα → P|Uα and lifts of
transition functions gαβ : Uαβ → U (H). The local sections of P allow us to identify
A with a collection of maps Aα : Uα → F(H) such that Aα = gαβ Aβg−1

αβ on Uαβ .
Because of Lemma 5.2, taking a refinement of U if necessary, we can find a positive
number µα such that µα ∈ ⋂

x∈Uα ρ(( Â
2
α)x ). By Proposition 5.1, we get a finite rank

Z2-graded Hermitian vector bundle Eα = ⋃

x∈Uα (Ĥ, ( Âα)x )<µα over Uα . The restric-

tion of Âα to Eα defines a Hermitian map hα : Eα → Eα of degree 1. On Uαβ , we
define φαβ : Eβ → Eα to be the composition of the maps:

⋃

x∈Uαβ

(Ĥ, ( Âβ)x )<µβ → Uαβ × Ĥ id×gαβ−→ Uαβ × Ĥ→
⋃

x∈Uαβ

(Ĥ, ( Âα)x )<µα ,

where the first and third maps are the inclusion and projection, respectively. The data E =
(U , sα, gαβ, (Eα, hα), φαβ) is a P-twisted vectorial bundle over X . The isomorphism
class of E is independent of the choice of µα , sα , gαβ and U . Now, the homomorphism
α : K P (X)→ KFP (X) is given by α([A]) = [E].

The same construction yields a natural mapα : K P (X,Y )→ KFP (X,Y ) for Y ⊂ X ,
and hence αn : K n

P (X,Y )→ KFn
P (X,Y ).

Lemma 5.6. For a paracompact space X and a principal PU (H)-bundle P → X, the
following diagram commutes:

K P (X)
β−−−−→ K P×D2(X × D2, X × S1)

α

⏐

⏐

	

⏐

⏐

	
α

KFP (X)
β−−−−→ KFP×D2(X × D2, X × S1),

where the upper map β induces the Bott periodicity K 0
P (X)

∼= K−2
P (X).

Before the proof of this lemma, we explain the map β inducing the Bott periodicity
for twisted K -cohomology. Roughly, the map is a “multiplication of a Thom class”.
To be more precise, recall the identification of F(H) with F(Ĥ). This identification
is compatible with the conjugate actions of PU (H), through the diagonal embedding
U (H)→ U (Ĥ). So we can represent an element in K P (X) by a section Â of the asso-
ciated bundle P×Ad F(Ĥ) over X . We identify the section with a map Â : P → F(Ĥ).
For (p, z) ∈ P × D2, we define a degree 1 self-adjoint Fredholm operator β(A)(p,z) on
the Z2-graded Hilbert space Ĥ⊗ (C⊕ C) by

β(Â)(p,z) = Âp ⊗ 1 + ε ⊗ Tz

=
(

0 A
∗
p

Ap 0

)

⊗
(

1 0
0 1

)

+

(

1 0
0 −1

)

⊗
(

0 z̄
z 0

)

.

This operator defines a section β(Â) of (P × D2)×Ad F(Ĥ⊗ (C⊕C)) over X × D2,
and induces the Bott periodicity map β : K P (X)→ K P×D2(X × D2, X × S1).
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Proof of Lemma 5.6. Let Â ∈ �(X, P×Ad F(Ĥ)) be a section given. First, we describe
βα([Â]) ∈ KF−2

P (X) as follows: let an object

E = ({Uα}α∈A, sα, gαβ, (Eα, hα), φαβ) ∈ KF P (X)

represent the element α([Â]) ∈ KFP (X). We suppose that Eα is given by
Eα = ⋃

x∈Uα (Ĥ, ( Âα)x )<µα under a choice of a positive number µα . Taking a finer
open cover if necessary, we can assume that the rank of Eα is rα , and that there exists a
positive number εα such that εα < min{µα − λrα (x), λrα+1(x) − µα} for all x ∈ Uα .
Here λ j (x) is the j th eigenvalue of ( Â2

α)x , which varies continuously in x (cf. Lemma
5.3). We define an open cover {V (s; εα)}s∈[0,1] of D2 by setting

V (s; εα) = {z ∈ D2| s − εα < |z|2 < s + εα}, s ∈ [0, 1].
Then we can represent βα([Â]) ∈ KF−2

P (X) by

({Uα × V (s; εα)}, π∗X sα, π
∗
X gαβ, (π

∗
X Eα ⊗ (C⊕ C), π∗X hα⊗̂π∗D2 T ), π∗Xφαβ).

Next, we consider the element αβ([Â]) ∈ KF−2
P (X). In applying Proposition 5.1 to the

sectionβ(Â) of (P×D2)×Ad F(Ĥ⊗(C⊕C)), we use the open set Uα×V (s; εα) and the
positive numberµα+s. The j th eigenvalue of the square of ( Âα)x⊗1+ε⊗Tz isλ j (x)+|z|2.
Since λrα (x) + |z|2 < µα + s < λrα+1(x) + |z|2 holds for (x, z) ∈ Uα × V (s; εα) by
construction, we obtain:

(Ĥ⊗ (C⊕ C), ( Âα)x ⊗ 1 + ε ⊗ Tz)<µα+s ∼= (Ĥ, ( Âα)x )<µ ⊗ (C⊕ C).

Hence the representative of βα([Â]) also represents αβ([Â]). ��
Proposition 5.7. The homomorphisms αn : K n

P (X,Y )→ KFn
P (X,Y ), (n ≤ 1) consti-

tute a natural transformation of cohomology theories.

Proof. It suffices to see that the natural homomorphisms αn are compatible with the
axioms in Proposition 2.2 and 4.1. The homotopy axioms, the excision axioms and the
additivity axioms are clearly compatible with αn . For n < 0, inclusion maps define δn ,
so that δnαn = αn+1δn . This formula also holds for n = 0, because of Lemma 5.6. As a
result, the “exactness” axioms are compatible with αn . ��

5.3. Finite-dimensional approximation in untwisted case. In untwisted case, the map α
has the following property:

Proposition 5.8. If (X,Y ; P) ∈ ̂C is such that P → X is trivial, then the homomorphism
α : K P (X,Y )→ KFP (X,Y ) is bijective.

If P is trivial, then we can identify K P (X,Y ) with the set of the homotopy classes
of maps A : X → F(H) such that Ay , (y ∈ Y ) is the identify. Accordingly, we identify
the map in Proposition 5.8 with:

α : [(X,Y ), (F(H), 1)] −→ KF(X,Y ),

where the group KF(X,Y ) consists of homotopy classes of vectorial bundles whose
supports do not intersect Y .

For the proof of Proposition 5.8, we notice Furuta’s result:
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Theorem 5.9 ([13]). For a compact space X and its closed subspace Y ⊂ X, there is
an isomorphism K (X,Y )→ KF(X,Y ).

The K -group K (X,Y ) above is formulated by means of vector bundles, rather than
Fredholm operators. In the case of Y = ∅, Theorem 5.9 gives Theorem 3.4. The proof
of Theorem 5.9 is also included in the Appendix.

Thanks to the above result of Furuta, we have:

Lemma 5.10. For a compact space X, the map α : [X,F(H)] → KF(X) is bijective.

Proof. For (a), we consider the following diagram:

[X,F(H)]
ind

������������
α

		����������

K (X) �� KF(X),

where ind : [X,F(H)] → K (X) is the isomorphism constructed in [1,3]. The homo-
morphism K (X)→ KF(X) is introduced in Subsect. 3.1. The method showing the sur-
jectivity of ind in [1] allows us to realize any vector bundle E→ X as E=⋃

x∈X Ker Âx

by means of a map A : X → F(H) such that σ( Â2
x ) = {0, 1} for all x ∈ X . Thus, the

above diagram is commutative, so that Theorem 3.4 implies the present lemma. ��
Lemma 5.11. For (X, pt) ∈ C, the map α : [(X, pt), (F(H), 1)] → KF(X, pt) is bijec-
tive.

Proof. We use the exact sequences for (X, pt). By Proposition 5.7, the diagram

[(I, ∂ I ), (F(H), 1)] −−−−→ [(X, pt), (F(H), 1)] −−−−→ [X,F(H)]
⏐

⏐

	
α

⏐

⏐

	
α

⏐

⏐

	
α

KF(I, ∂ I ) −−−−→ KF(X, pt) −−−−→ KF(X)

is commutative. Because F(H) is a representing space for K -theory [3], we have
π1(F(H), 1) = 0. By Theorem 5.9, we also have KF(I, ∂ I ) ∼= K (I, ∂ I ) = 0. Hence
Lemma 5.10 leads to the present lemma. ��

The following is also a result of Furuta:

Lemma 5.12 ([13]). If X is compact and Y ⊂ X is closed, then the quotient map
q : X → X/Y induces an isomorphism KF(X,Y ) ∼= KF(X/Y, pt).

Proof. Under the assumption, the topology of (X/Y ) − pt induced from X/Y coin-
cides with the topology of X − Y induced from X . Hence the isomorphism classes in
KF(X,Y ) correspond bijectively to those in KF(X/Y, pt) via q. Since this correspon-
dence respects homotopies, the lemma is proved. ��
Proof of Proposition 5.8. The quotient q : X → X/Y gives the diagram:

[(X,Y ), (F(H), 1)] α−−−−→ KF(X,Y )

q∗
�

⏐

⏐

�

⏐

⏐
q∗

[(X/Y, pt), (F(H), 1)] −−−−→
α

KF(X/Y, pt).
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By Lemma 5.12, the right q∗ is bijective. Since Y → X is a cofibration, the left q∗
is also bijective, and the diagram above is commutative. Now Lemma 5.11 establishes
Proposition 5.8. ��

5.4. Main theorem.

Theorem 5.13. For a CW complex X and a principal PU (H)-bundle P → X, the
homomorphism α−n : K−n

P (X)→ KF−n
P (X), (n ≥ 0) is bijective.

To prove this theorem, we begin with the case that X is finite.

Lemma 5.14. Let X = eq ∪ Y be a finite CW complex given by attaching a q-cell to
another finite CW complex Y . Then, for any principal PU (H)-bundle P → X, we have
natural isomorphisms compatible with α−n:

K−n
P (X,Y ) ∼= K−n(Dq , Sq−1),

KF−n
P (X,Y ) ∼= KF−n(Dq , Sq−1).

Proof. Let f : Dq → X denote the map attaching the q-cell. By definition, f induces
a homeomorphism from Dq − Sq−1 to its image eq = f (Dq − Sq−1). We write ēq for
the closure of eq in X , and ∂ ēq for its boundary. Regarding Dq as the unit disk in R

q ,
we decompose it as Dq = D′ ∪ A, where D′ is the disk of radius 1/2, and A the annulus
whose radius r ranges from 1/2 ≤ r ≤ 1. Then, setting Dq

+ = f (D′) and ēq
− = f (A),

we can describe ēq as the union ēq = Dq
+ ∪ ēq

−. Since ∂ ēq is homotopy equivalent to
ēq
−, the excision axiom gives

K−n
P (X,Y ) ∼= K−n

P|ēq (ē
q , ∂ ēq) ∼= K−n

P|ēq (ē
q , ēq
−) ∼= K−n

P|
D

q
+

(Dq
+, ∂Dq

+).

Because all principal PU (H)-bundles over the disk Dq
+ are trivial, we have K−n

P|
D

q
+

(Dq
+, ∂Dq

+)
∼= K−n(Dq

+, ∂Dq
+), and hence the first isomorphism. The same argument

is valid for the second isomorphism. These isomorphisms come from the axioms in
Proposition 2.2 and 4.1, so that the compatibility with α−n follows. ��
Lemma 5.15. Let X be a finite CW complex. Then, for a principal PU (H)-bundle
P → X, the homomorphism α−n : K−n

P (X)→ KF−n
P (X), (n ≥ 0) is bijective.

Proof. We prove this lemma by an induction on the number r of cells in X . If r = 1,
then X consists of a point, so that α−n , (n ≥ 0) is bijective by Proposition 5.8. If r > 1,
then we can express X as X = eq ∪ Y , where eq is a q-dimensional cell, and Y is a
subcomplex with (r−1) cells. Proposition 5.7 gives the following commutative diagram
for n ≥ 0:

K−n−1
P|Y (Y ) ��

��

K−n
P (X,Y ) ��

��

K−n
P (X) ��

α−n

��

K−n
P|Y (Y ) ��

��

K−n+1
P (X,Y )

��
KF−n−1

P|Y (Y ) �� KF−n
P (X,Y ) �� KF−n

P (X) �� KF−n
P|Y (Y ) �� KF−n+1

P (X,Y )

As the hypothesis of the induction, we assume the first and fourth vertical maps are
bijective. Lemma 5.14 and Proposition 5.8 imply that the second and fifth maps are
bijective. Therefore the third map is also bijective. Notice that the five lemma works
even if the lower row is not exact at KF0

P|Y (Y ). ��
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Proof of Theorem 5.13. Let Xq ⊂ X be the subcomplex consisting of cells whose
dimensions are less than or equal to q. Identifying Xq × {q + 1} ⊂ Xq × [q, q + 1] with
Xq × {q + 1} ⊂ Xq+1 × [q + 1, q + 2], we get the “telescope” X̃ of X :

X̃ = X0 × [0, 1] ∪ X1 × [1, 2] ∪ X2 × [2, 3] ∪ · · · .

In a similar way, we get a principal PU (H)-bundle P̃ → X̃ from P → X . As is known
[18], the projections Xq×[q, q +1] → Xq induce a homotopy equivalence� : X̃ → X .
Since � ∗P ∼= P̃ , we have K−n

P̃
(X̃) ∼= K−n

P (X) as well as KF−n
P̃
(X̃) ∼= KF−n

P (X).

Thus, to show Theorem 5.13, it suffices to prove that α−n : K−n
P̃
(X̃) → KF−n

P̃
(X̃)

is bijective for n ≥ 0. For this purpose, we let Ỹ be the subcomplex in X̃ given by
Ỹ =∐

q Xq =∐

q Xq × {q}. For n ≥ 0, Proposition 5.7 gives:

K−n−1
P̃|Ỹ

(Ỹ ) ��

��

K−n
P̃
(X̃ , Ỹ ) ��

��

K−n
P̃
(X̃) ��

α−n

��

K−n
P̃|Ỹ
(Ỹ ) ��

��

K−n+1
P̃

(X̃ , Ỹ )

��
KF−n−1

P̃|Ỹ
(Ỹ ) �� KF−n

P̃
(X̃ , Ỹ ) �� KF−n

P̃
(X̃) �� KF−n

P̃|Ỹ
(Ỹ ) �� KF−n+1

P̃
(X̃ , Ỹ ).

The first and fourth columns in the commutative diagram above are bijective: the addi-
tivity axiom in Proposition 2.2 implies

K−n
P̃|Ỹ
(Ỹ ) ∼= K−n

∐

q P|Xq
(
∐

q Xq) ∼=
∏

q

K−n
P|Xq (X

q).

Similarly, we have KF−n
P̃|Ỹ
(Ỹ ) ∼= ∏

q KF−n
P|Xq (X

q). Because Xq is a finite CW com-

plex, the map α−n : K−n
P|Xq (X

q)→ KF−n
P|Xq (X

q) is bijective by Lemma 5.15, and so is

α−n :∏q K−n
P|Xq (X

q)→∏

q KF−n
P|Xq (X

q). The second and fifth columns can be shown
to be bijective in the same way, since we have

K−n
P̃
(X̃ , Ỹ ) ∼= K−n

∐

q P|Xq×I (
∐

q Xq × I,
∐

q Xq × ∂ I )

∼=
∏

q

K−n
P|Xq×I (X

q × I, Xq × ∂ I ) =
∏

q

K−n−1
P|Xq (X

q).

Now, the five lemma leads to the bijectivity of the third. ��
We have Theorem 1 by setting n = 0 in Theorem 5.13. We also have:

Corollary 5.16. (Bott periodicity) Under the assumption in Theorem 5.13, there is a
natural isomorphism KF−n

P (X) ∼= KF−n−2
P (X) for n ≥ 0.

Thus, on CW complexes, we can extend Proposition 4.1 to get a cohomology theory
{KFn

P (X,Y )}n∈Z equivalent to twisted K -cohomology.
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Appendix A. Proof of Furuta’s Theorem

We provide proof of Furuta’s theorems (Theorem 3.4 and 5.9) culling from [13]. Most
parts of this appendix are devoted to the proof of Theorem 3.4, since the proof of The-
orem 5.9 is almost the same. To prove Theorem 3.4, we begin with preliminaries in
Subsect. A.1, and then construct a vector bundle from a vectorial bundle in Subsect. A.2.
We use the vector bundle to prove that the map K (X)→ KF(X) is surjective in Sub-
sect. A.3. Finally, the injectivity of K (X)→ KF(X) is shown in Subsect. A.4.

A.1. Preliminary. Let E = ({Uα}α∈A, (Eα, hα), φαβ) ∈ KF(X) be a vectorial bundle
on a compact space X . Taking a finer open cover if necessary, we can assume that Eα is
a trivial bundle Eα = Uα × Vα , where Vα = V 0

α ⊕ V 1
α is a Z2-graded Hermitian vector

space of finite rank. Since X is compact, we can also assume that {Uα}α∈A is a finite
cover of X . For x ∈ X , we put A(x) = {α ∈ A| x ∈ Uα}.
Lemma A.1. There is a positive number λ such that: for x ∈ X and α, β ∈ A(x), the
map (φαβ)x : Vβ → Vα induces an isomorphism

(Vβ, (hβ)x )<λ ∼= (Vα, (hα)x )<λ.
Proof. By the definition of vectorial bundles, we can find, for each point x ∈ X , an open
neighborhood Ux of x and a positive number λx such that: for y ∈ Ux and α, β ∈ A(x),
the map (φαβ)y induces an isomorphism (Vβ, (hβ)y)<λx

∼= (Vα, (hα)y)<λx . Because X
is compact, we can choose a finite number of points x1, . . . , xn ∈ X so that Ux1, . . . ,Uxn

cover X . The minimum among λx1, . . . , λxn gives the λ. ��
We choose and fix a positive number λ in the lemma above. Then, for x ∈ X , we

define a Z2-graded Hermitian vector space (E)x to be

(E)x =
∐

α∈A(x)
(Vα, (hα)x )<λ/ ∼,

where ∼ is an equivalence relation: for vα ∈ Vα and vβ ∈ Vβ , we have vα ∼ vβ if and
only if (φαβ)xvβ = vα . We also define a Hermitian map of degree 1,

(hE )x : (E)x → (E)x , [vα] �→ [(hα)xvα],
where [vα] stands for the element in (E)x represented by vα ∈ (Vα, (hα)x )<λ.

Lemma A.2. For a point x0 ∈ X and a number µ such that µ ∈ (0, λ) ∩ ρ((hE )
2
x0
),

there is an open neighborhood U of x0 on which the family of vector spaces
⋃

x∈U

((E)x , (hE )x )<µ

gives rise to a vector bundle.

We remark that the family of vector spaces
⋃

x∈X (E)x is not generally a vector bundle
over X since the dimension of (E)x may jump as x varies.

Proof. We take and fix α ∈ A(x0). The same argument as in Subsect. 5.1 implies that
there is an open neighborhood U of x0 on which

⋃

x∈U (Vα, (hα)x )<µ gives rise to a
vector bundle over U . Hence the natural bijection between

⋃

x∈U (Vα, (hα)x )<µ and
⋃

x∈U ((E)x , (hE )x )<µ establishes the lemma. ��
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A.2. Construction of vector bundle. Let {ρ2
0 , ρ

2∞} be a partition of unity subordinate to
the open cover {[0, λ), (0,∞)} of [0,∞). For x ∈ X and α ∈ A(x), the functional cal-
culus induces the Hermitian map ρ2

0 ((hα)
2
x ) : Vα → Vα . We can think of ρ2

0 ((hα)
2
x ) as

an “approximation” of the orthogonal projection onto (Vα, (hα)x )<λ. In fact, the image
of Vα under ρ2

0 ((hα)
2
x ) is in (Vα, (hα)x )<λ. In particular, the image of the odd part V 1

α

is in (Vα, (hα)x )1<λ = V 1
α ∩ (Vα, (hα)x )<λ, since ρ2

0 ((hα)
2
x ) is of degree 0.

Now, we use a partition of unity {�α}α∈A subordinate to the open cover {Uα}α∈A of
X to define the linear map (g)x , (x ∈ X ) as follows:

(g)x :
⊕

α∈A
V 1
α −→ (E1)x ,

⊕

α v
1
α �→

∑

α �α(x)[ρ2
0 ((hα)

2
x )v

1
α],

where (E)x = (E0)x ⊕ (E1)x and (Ei )x = ∐

α∈A(x)(Vα, (hα)x )i<λ/ ∼. By means of
(g)x , we also define the linear maps

(gi )x : (Ei )x ⊕
⊕

α∈A
V 1
α −→ (E1)x

to be

(g0)x (v
0 ⊕ (⊕α v

1
α)) = ρ∞((hE )

2
x )(hE )xv

0 + (g)x (
⊕

α v
1
α),

(g1)x (v
1 ⊕ (⊕α v

1
α)) = ρ∞((hE )

2
x )v

1 + (g)x (
⊕

α v
1
α).

Lemma A.3. The maps (g0)x and (g1)x are surjective at each x ∈ X.

Proof. Consider the eigenspace decomposition (E1)x =⊕

κ Ker((hE )
2
x − κ). For each

κ , we have ρ2
0 (κ) �= 0 or ρ2∞(κ) �= 0. In the case of ρ2

0 (κ) �= 0, we can see Ker((hE )
2
x −

κ) ⊂ (g)x (V 1
α ) for an α ∈ A(x) such that �α(x) �= 0. In the case of ρ2∞(κ) �= 0, we

clearly have Ker((hE )
2
x − κ) ⊂ (g1)x ((E1)x ). Since κ �= 0 in this case, we also have

Ker((hE )
2
x − κ) ⊂ (g0)x ((E0)x ). ��

Accordingly, we have the following exact sequence at each x ∈ X :

0 −−−−→ (Fi )x −−−−→ (Ei )x ⊕
⊕

α∈A
V 1
α

(gi )x−−−−→ (E1)x −−−−→ 0,

where (Fi )x = Ker(gi )x . The exact sequence implies that dim(Fi )x is locally constant
in x , because dim(E0)x − dim(E1)x is. While the family of vector spaces

⋃

x∈X (E
i )x

is not generally a vector bundle, we have:

Proposition A.4. For i = 0, 1, the family of vector spaces Fi =⋃

x∈X (F
i )x gives rise

to a vector bundle over X.

Proof. We take and fix x0 ∈ X and α0 ∈ A(x0). For x ∈ Uα0 , we introduce linear maps
as follows:

(τ i
α0
)x : (Ei )x −→ V i

α0
, [vi

α] �→ (φα0α)xv
i
α,

(gα0)x :
⊕

α∈A V 1
α −→ V 1

α0
,

⊕

α v
1
α �→

∑

α �α(x)(φα0α)xρ
2
0 ((hα)

2
x )v

1
α.

Note that (gα0)x = (τ 1
α0
)x ◦ (g)x . We also introduce

(gi
α0
)x : V i

α0
⊕

⊕

α∈A
V 1
α −→ V 1

α0
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by setting

(g0
α0
)x (v

0 ⊕ (⊕α v
1
α)) = ρ∞((hα0)

2
x )(hα0)xv

0 + (g)x (
⊕

α v
1
α),

(g1
α0
)x (v

1 ⊕ (⊕α v
1
α)) = ρ∞((hα0)

2
x )v

1 + (g)x (
⊕

α v
1
α).

In the same way as in the proof of Lemma A.3, we see that (gi
α0
)x are also surjective for

x ∈ Uα0 . Now, we have the commutative diagram:

0 −−−−→ Ker(gi
α0
)x −−−−→ V i

α0
⊕

⊕

α∈A
V 1
α

(gi
α0
)x−−−−→ V 1

α0
−−−−→ 0

�

⏐

⏐
(τ i
α0
)x⊕id

�

⏐

⏐

�

⏐

⏐
(τ 1
α0
)x

0 −−−−→ (Fi )x −−−−→ (Ei )x ⊕
⊕

α∈A
V 1
α

(gi )x−−−−→ (E1)x −−−−→ 0.

Since (τ i
α0
)x is injective, so is the map (Fi )x → Ker(gi

α0
)x . Because dim(E0)x −

dim(E1)x = dim V 0
α0
− dim V 1

α0
, we have dim(Fi )x = dim Ker(gi

α0
)x . This implies

that the map (Fi )x → Ker(gi
α0
)x is bijective. Consequently, we can identify Fi |Uα0

with the family of vector spaces
⋃

x∈Uα0
Ker(gi

α0
)x . Because (gi

α0
)x is continuous in

x ∈ Uα0 , the family
⋃

x∈Uα0
Ker(gi

α0
)x becomes a vector bundle. Hence the identifica-

tion makes Fi into a vector bundle. ��

A.3. Surjectivity. In this subsection, we prove:

Proposition A.5. If X is compact, then K (X)→ KF(X) is surjective.

So far, a Z2-graded vector bundle F = F0 ⊕ F1 over X is constructed from a given
vectorial bundle E ∈ KF(X). To prove the proposition above, it suffices to introduce
a Hermitian metric and a Hermitian map h on F so that (F, h) is isomorphic to E as a
vectorial bundle.

For x ∈ X , we define a Hermitian metric on (Ei )x ⊕ (⊕α∈A V 1
α ) by:

‖v0 ⊕ (⊕α v
1
α)‖2 = ‖v0‖2 +

1

λ

∑

α

‖vα‖2,

‖v1 ⊕ (⊕α v
1
α)‖2 = ‖v1‖2 +

∑

α

‖vα‖2.

We induce the Hermitian metric on (Fi )x by restriction. We then define

(h10)x : (F0)x −→ (F1)x , v0 ⊕ (⊕α v
1
α) �→ (hE )xv

0 ⊕ (⊕α v
1
α).

We put hx = (h10)x + (h01)x , where (h01)x is the adjoint of (h10)x :

(h01)x : (F1)x −→ (F0)x , v1 ⊕ (⊕α v
1
α) �→ (hE )xv

1 ⊕ (⊕α λv
1
α).
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Lemma A.6. Let µ0 > 0 be such that �0(r) = 1 for r ∈ [0, µ0]. Then for x ∈ X the
composition of the inclusion and the projection

(Fi )x −→ (Ei )x ⊕
⊕

α∈A
V 1
α −→ (Ei )x

induces an isomorphism (F, h)x,<µ0
∼= ((E)x , (hE )

2
x )<µ0 .

Proof. The point x ∈ X will be fixed in this proof. So we omit subscripts x from
(Fi )x , (Ei )x (hE )

2
x , and so on. The map h2

E ⊕ (
⊕

α h2
α) is Hermitian with respect to the

Hermitian metric on Ei ⊕ (⊕α∈A V 1
α ) introduced just before this lemma. Hence we get

the orthogonal decomposition

Ei ⊕
⊕

α∈A
V 1
α =

⊕

µ≥0

F̂µ, F̂µ = Ker(h2
E ⊕ (

⊕

α h2
α)− µ).

Since gi ◦ (

h2
E ⊕ (

⊕

α h2
α)

) = h2
E ◦ gi , we also get the orthogonal decomposition

F =
⊕

µ≥0

Fµ, Fµ = F ∩ F̂µ.

Because h ◦ (

h2
E ⊕ (

⊕

α h2
α)

) = (

h2
E ⊕ (

⊕

α h2
α)

) ◦ h, the map h preserves the orthog-
onal decomposition of F . Thus, in the following, we will verify the present lemma on
each space Fµ.

First, we suppose µ ≥ µ0. Then we have (F, h)<µ0 ∩ Fµ = {0}. To see this, notice
λ ≥ µ0. For a vector v0 ⊕ (⊕α v

1
α) in the even part F0

µ of Fµ, we have

‖h10(v
0 ⊕ (⊕α v

1
α))‖2

‖v0 ⊕ (⊕α v
1
α)‖2

≥ µ‖v
0‖2 +

∑

α‖v1
α‖2

‖v0‖2 + 1
λ

∑

α|v1
α‖2
≥ min{µ, λ} ≥ µ0.

Hence the eigenvalue of h2 is greater than or equal to µ0 on the even part F0
µ, and so is

on the odd part F1
µ.

Next, we consider the case of µ < µ0. Because �0(µ) = 1 and �∞(µ) = 0, a vector
vi ⊕ (⊕α v

1
α) in F̂ i

µ belongs to Fi
µ if and only if

∑

α �αv
1
α = 0. Hence Fi

µ has the
orthogonal decomposition Fi

µ = Ei
µ ⊕ V 1

µ , where

Ei
µ = Ei ∩ Ker(h2

E − µ),
V 1
µ = {

⊕

α v
1
α ∈

⊕

α∈A V 1
α |

∑

α �αv
1
α = 0} ∩ Ker(

⊕

α h2
α − µ).

The Hermitian map h2 preserves the decomposition. In particular, h2 = λ on V 1
µ , so that

(F, h)<µ0 ∩ Fµ = Eµ. Thus, (F, h)<µ0 = (E, hE )<µ0 . ��
The isomorphism in Lemma A.6 is compatible with the Hermitian maps (h)x and

(hE )x . In addition, the isomorphism in Lemma A.6 induces an isomorphism of vec-
tor bundles locally, provided that µ0 is chosen suitably. Now, the construction of (E)x
implies that (F, h) is isomorphic to E as a vectorial bundle, which completes the proof
of Proposition A.5.

If Y ⊂ X is a closed subspace and SuppE∩ Y = ∅, then we also have Supp(F, h)∩
Y = ∅. This means that we have the pair of vector bundles (F0, F1) and h10 : F0 → F1

is invertible on Y . As is known [1], such data (F0, F1, h10) constitute the K -group
K (X,Y ). Thus we get:
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Proposition A.7. For a compact space X and its closed subspace Y ⊂ X, there is a
surjection K (X,Y )→ KF(X,Y ).

A.4. Injectivity.

Proposition A.8. If X is compact, then K (X)→ KF(X) is injective.

Proof. Suppose that two Z2-graded Hermitian vector bundles F0 and F1 over X give
the same element in KF(X). Then there is a vectorial bundle F̃ on X × [0, 1] such that
F̃|X×{i} is isomorphic to (Fi , hi ) as a vectorial bundle, where hi is the trivial Hermitian
map hi = 0. Thanks to the construction proving Proposition A.5, we can replace F̃

by a pair (F̃, h̃), where F̃ is a Z2-graded Hermitian vector bundle on X × [0, 1] and
h̃ : F̃ → F̃ is a Hermitian map of degree 1. That (Fi , hi ) ∼= (F̃, h̃)|X×{i} as vectorial
bundles means that Fi ∼= Kerh̃2|X×{i} as vector bundles. This implies that the pairs
(F0

i , F1
i ) and (F̃0|X×{i}, F̃1|X×{i}) are in the same class in K (X). Therefore the pairs

(F0
0 , F1

0 ) and (F0
1 , F1

1 ) represent the same class in K (X). ��
Proposition A.9. For a compact space X and its closed subspace Y ⊂ X, the map
K (X,Y )→ KF(X,Y ) is injective.

Lemma A.10. For i = 0, 1, let Fi = F0
i ⊕ F1

i be a Z2-graded Hermitian vector bundle
over a compact space X, and hi : Fi → Fi a Hermitian map of degree 1. If (F0, h0)

and (F1, h1) are isomorphic in KF(X), then F0
0 ⊕ F1

1 and F1
0 ⊕ F0

1 are isomorphic as
vector bundles.

Proof. By the definition of the equivalences in KF(X), we have a map g : F0 → F1
of degree 0 compatible with h0 and h1 such that: for each x ∈ X , there are a positive
integer λx and an open neighborhood Ux of x such that: (g)y induces an isomorphism
(F0, h0)y,<λx

∼= (F1, h1)y,<λx for all y ∈ X . Since X is compact, we can find a positive
number λ such that: (g)x induces an isomorphism (F0, h0)x,<λ ∼= (F1, h1)x,<λ for each
x ∈ X .

We choose such λ as above, and take a partition of unity {ρ2
0 , ρ

2∞} subordinate to the
open cover {[0, λ), (0,∞)} of [0,∞). The Hermitian map ρ0((h1)

2
x ) : (F1)x → (F1)x

plays a role of a continuous “approximation” of (a square root of) the orthogonal projec-
tion onto (F1, h1)x,<λ. In fact, the image of ρ0((h1)

2
x ) is in (F1, h1)x,<λ. Hence the map

(g)−1
x ρ0((h1)

2
x ) : (F1)x → (F0)x makes sense. In particular, this map is continuous in

x , so that we obtain a vector bundle map g−1ρ0(h2
1) : F1 → F0 of degree 0. Similarly,

the image of ρ∞((h1)
2
x ) is in (F1, h1)x,≥λ =⊕

κ≥λ Ker((h1)
2
x − κ). Thus, we obtain a

vector bundle map sgn(h1)ρ∞(h2
1) : F1 → F1 of degree 1, where sgn(t) = t/|t |.

Now, we define h̃ : F0 ⊕ F1 → F0 ⊕ F1 to be h̃ = h̃0 + h̃∞, where

h̃0 = gρ0(h
2
0) + g−1ρ0(h

2
1),

h̃∞ = sgn(h0)ρ∞(h2
0)− sgn(h1)ρ∞(h2

1).

Then h̃2
0 = ρ0(h2

1)
2 + ρ0(h2

0)
2, h̃2∞ = ρ∞(h2

1)
2 + ρ∞(h2

0)
2 and h̃0h̃∞ + h̃∞h̃0 = 0.

Therefore h̃2 = 1 and h̃ is an isomorphism. By construction, h̃ carries the component
F0

0 ⊕ F1
1 to F1

0 ⊕ F0
1 , and vice verse. ��
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Proof of Proposition A.9. For i = 0, 1, we let (Fi , hi ) represent an element in K (X,Y ),
where Fi = F0

i ⊕ F1
i is a Z2-graded Hermitian vector bundle on X and hi : Fi → Fi

is a Hermitian map of degree 1 such that hi is invertible on Y . Suppose that (Fi , hi )

define the same element in KF(X,Y ). Because X × [0, 1] is compact, the construction
showing Proposition A.5 gives a Z2-graded Hermitian vector bundle F̃ on X × [0, 1]
and a Hermitian map h̃ of degree 1 such that: h̃ is invertible on Y × [0, 1] and we
have (Fi , hi ) ∼= (F̃, h̃)|X×{i} in KF(X,Y ). Now, Lemma A.10 implies that (Fi , hi ) and
(F̃, h̃)|X×{i} represent the same class in K (X,Y ). Thus (F0, h0) and (F1, h1) are in the
same class in K (X, Y ). ��
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