659 research outputs found
Application of the penalty coupling method for the analysis of blood vessels
Due to the significant health and economic impact of blood vessel diseases on modern society, its analysis is becoming of increasing importance for the medical sciences. The complexity of the vascular system, its dynamics and material characteristics all make it an ideal candidate for analysis through fluid structure interaction (FSI) simulations. FSI is a relatively new approach in numerical analysis and enables the multi-physical analysis of problems, yielding a higher accuracy of results than could be possible when using a single physics code to analyse the same category of problems. This paper introduces the concepts behind the Arbitrary Lagrangian Eulerian (ALE) formulation using the penalty coupling method. It moves on to present a validation case and compares it to available simulation results from the literature using a different FSI method. Results were found to correspond well to the comparison case as well as basic theory
Ein Jahr auf Oesel : Beiträge zum System Ludendorff
http://www.ester.ee/record=b1456550*es
BACE inhibitor treatment of mice induces hyperactivity in a Seizure-related gene 6 family dependent manner without altering learning and memory
BACE inhibitors, which decrease BACE1 (beta -secretase 1) cleavage of the amyloid precursor protein, are a potential treatment for Alzheimer's disease. Clinical trials using BACE inhibitors have reported a lack of positive effect on patient symptoms and, in some cases, have led to increased adverse events, cognitive worsening and hippocampal atrophy. A potential drawback of this strategy is the effect of BACE inhibition on other BACE1 substrates such as Seizure-related gene 6 (Sez6) family proteins which are known to have a role in neuronal function. Mice were treated with an in-diet BACE inhibitor for 4-8 weeks to achieve a clinically-relevant level of amyloid-beta 40 reduction in the brain. Mice underwent behavioural testing and postmortem analysis of dendritic spine number and morphology with Golgi-Cox staining. Sez6 family triple knockout mice were tested alongside wild-type mice to identify whether any effects of the treatment were due to altered cleavage of Sez6 family proteins. Wild-type mice treated with BACE inhibitor displayed hyperactivity on the elevated open field, as indicated by greater distance travelled, but this effect was not observed in treated Sez6 triple knockout mice. BACE inhibitor treatment did not lead to significant changes in spatial or fear learning, reference memory, cognitive flexibility or anxiety in mice as assessed by the Morris water maze, context fear conditioning, or light-dark box tests. Chronic BACE inhibitor treatment reduced the density of mushroom-type spines in the somatosensory cortex, regardless of genotype, but did not affect steady-state dendritic spine density or morphology in the CA1 region of the hippocampus. Chronic BACE inhibition for 1-2 months in mice led to increased locomotor output but did not alter memory or cognitive flexibility. While the mechanism underlying the treatment-induced hyperactivity is unknown, the absence of this response in Sez6 triple knockout mice indicates that blocking ectodomain shedding of Sez6 family proteins is a contributing factor. In contrast, the decrease in mature spine density in cortical neurons was not attributable to lack of shed Sez6 family protein ectodomains. Therefore, other BACE1 substrates are implicated in this effect and, potentially, in the cognitive decline in longer-term chronically treated patients
Contribution of Red Blood Cells and Platelets to Blood Clot Computed Tomography Imaging and Compressive Mechanical Characteristics
Thrombus computed tomography (CT) imaging characteristics may correspond with thrombus mechanical properties and thus predict thrombectomy success. The impact of red blood cell (RBC) content on these properties (imaging and mechanics) has been widely studied. However, the additional effect of platelets has not been considered. The objective of the current study was to examine the individual and combined effects of blood clot RBC and platelet content on resultant CT imaging and mechanical characteristics. Human blood clot analogues were prepared from a combination of preselected RBC volumes and platelet concentrations to decouple their contributions. The resulting clot RBC content (%) and platelet content (%) were determined using Martius Scarlet Blue and CD42b staining, respectively. Non-contrast and contrast-enhanced CT (NCCT and CECT) scans were performed to measure the clot densities. CECT density increase was taken as a proxy for clinical perviousness. Unconfined compressive mechanics were analysed by performing 10 cycles of 80% strain. RBC content is the major determinant of clot NCCT density. However, additional consideration of the platelet content improves the association. CECT density increase is influenced by clot platelet and not RBC content. Platelet content is the dominant component driving clot stiffness, especially at high strains. Both RBC and platelet content contribute to the clot's viscoelastic and plastic compressive properties. The current in vitro results suggest that CT density is reflective of RBC content and subsequent clot viscoelasticity and plasticity, and that perviousness reflects the clot's platelet content and subsequent stiffness. However, these indications should be confirmed in a clinical stroke cohort
Contribution of Red Blood Cells and Platelets to Blood Clot Computed Tomography Imaging and Compressive Mechanical Characteristics
Thrombus computed tomography (CT) imaging characteristics may correspond with thrombus mechanical properties and thus predict thrombectomy success. The impact of red blood cell (RBC) content on these properties (imaging and mechanics) has been widely studied. However, the additional effect of platelets has not been considered. The objective of the current study was to examine the individual and combined effects of blood clot RBC and platelet content on resultant CT imaging and mechanical characteristics. Human blood clot analogues were prepared from a combination of preselected RBC volumes and platelet concentrations to decouple their contributions. The resulting clot RBC content (%) and platelet content (%) were determined using Martius Scarlet Blue and CD42b staining, respectively. Non-contrast and contrast-enhanced CT (NCCT and CECT) scans were performed to measure the clot densities. CECT density increase was taken as a proxy for clinical perviousness. Unconfined compressive mechanics were analysed by performing 10 cycles of 80% strain. RBC content is the major determinant of clot NCCT density. However, additional consideration of the platelet content improves the association. CECT density increase is influenced by clot platelet and not RBC content. Platelet content is the dominant component driving clot stiffness, especially at high strains. Both RBC and platelet content contribute to the clot's viscoelastic and plastic compressive properties. The current in vitro results suggest that CT density is reflective of RBC content and subsequent clot viscoelasticity and plasticity, and that perviousness reflects the clot's platelet content and subsequent stiffness. However, these indications should be confirmed in a clinical stroke cohort
Endurance-Type Exercise Increases Bulk and Individual Mitochondrial Protein Synthesis Rates in Rats.
Physical activity increases muscle protein synthesis rates. However, the impact of exercise on the coordinated up- and/or downregulation of individual protein synthesis rates in skeletal muscle tissue remains unclear. The authors assessed the impact of exercise on mixed muscle, myofibrillar, and mitochondrial protein synthesis rates as well as individual protein synthesis rates in vivo in rats. Adult Lewis rats either remained sedentary (n = 3) or had access to a running wheel (n = 3) for the last 2 weeks of a 3-week experimental period. Deuterated water was injected and subsequently administered in drinking water over the experimental period. Blood and soleus muscle were collected and used to assess bulk mixed muscle, myofibrillar, and mitochondrial protein synthesis rates using gas chromatography-mass spectrometry and individual muscle protein synthesis rates using liquid chromatography-mass spectrometry (i.e., dynamic proteomic profiling). Wheel running resulted in greater myofibrillar (3.94 ± 0.26 vs. 3.03 ± 0.15%/day; p < .01) and mitochondrial (4.64 ± 0.24 vs. 3.97 ± 0.26%/day; p < .05), but not mixed muscle (2.64 ± 0.96 vs. 2.38 ± 0.62%/day; p = .71) protein synthesis rates, when compared with the sedentary condition. Exercise impacted the synthesis rates of 80 proteins, with the difference from the sedentary condition ranging between -64% and +420%. Significantly greater synthesis rates were detected for F1-ATP synthase, ATP synthase subunit alpha, hemoglobin, myosin light chain-6, and synaptopodin-2 (p < .05). The skeletal muscle protein adaptive response to endurance-type exercise involves upregulation of mitochondrial protein synthesis rates, but it is highly coordinated as reflected by the up- and downregulation of various individual proteins across different bulk subcellular protein fractions
Performance of middleware based architectures: a quantitative approach
Most of today's E-business applications on the Internet are built upon middleware-based architectures. For service providers offering these applications performance is essential: less-than-acceptable performance levels may lead to customer churn, and thus loss of revenue, and as such directly affect the company's competitive edge. This raises the critical need for service providers to be able to predict and control performance. In this paper we demonstrate the usefulness of a quantitative modeling approach to analyze and predict the performance of middleware-based applications. To this end, we develop a quantitative performance model of middleware architectures based on CORBA, the de-facto standard for object middleware. A particular feature of the model is that it explicitly takes into account priority mechanisms that handle the access to the processors among the different threads. To validate the model we have compared performance predictions from simulation runs with results from lab experiments for a variety of parameter settings. The results show that (1) the inclusion of priority mechanisms in the model leads to a significant improvement of the accuracy of the performance predictions based on the model, and (2) a quantitative modeling approach to assess and predict the performance of middleware-based applications is very promising
The effect of distant reiki on pain in women after elective Caesarean section: a double-blinded randomised controlled trial
Introduction: Approximately 25% of all babies in North America are delivered via Caesarean section (C-section). Though a common surgical procedure, C-section recovery can be painful. Opioids, specifically codeine, are commonly used to ease pain; however, its active metabolite, morphine, passes into breast milk, and may produce unwanted side effects in neonates; therefore, alternatives to opioids are being sought. Reiki is an ancient Japanese form of healing where practitioners transfer healing energy through light touch and positive healing intention. Although 1.2 million Americans use reiki to reduce pain or depression, there is a lack of strong evidence supporting its effectiveness. A recent systematic review showed existing studies to be of poor methodological quality, with the common limitation of lack of blinding. To overcome this issue, the authors used distant reiki to assess its effectiveness in reducing pain following an elective C-section. Methods: In this randomised, double-blinded study, women who underwent an elective C-section were allocated to either usual care (control, n=40) or three distant reiki sessions in addition to usual care (n=40). Pain was assessed using a visual analogue scale (VAS). The primary endpoint was the Area Under the VAS-Time Curve (AUC) for days 1-3. Secondary measures included: The proportion of women who required opioid medications and dose consumed, rate of healing and vital signs. Results: AUC for pain was not significantly different in the distant reiki and control groups (mean±SD; 212.16104.7 vs 223.16117.8; p=0.96). There were no significant differences in opioid consumption or rate of healing; however, the distant reiki group had a significantly lower heart rate (74.368.1 bpm vs 79.867.9 bpm, p=0.003) an
- …