249 research outputs found
The gene coding for PGC-1α modifies age at onset in Huntington's Disease
Huntington's disease (HD) is one of the most common autosomal dominant inherited, neurodegenerative disorders. It is characterized by progressive motor, emotional and cognitive dysfunction. In addition metabolic abnormalities such as wasting and altered energy expenditure are increasingly recognized as clinical hallmarks of the disease. HD is caused by an unstable CAG repeat expansion in the HD gene (HTT), localized on chromosome 4p16.3. The number of CAG repeats in the HD gene is the main predictor of disease-onset, but the remaining variation is strongly heritable. Transcriptional dysregulation, mitochondrial dysfunction and enhanced oxidative stress have been implicated in the pathogenesis. Recent studies suggest that PGC-1α, a transcriptional master regulator of mitochondrial biogenesis and metabolism, is defective in HD. A genome wide search for modifier genes of HD age-of-onset had suggested linkage at chromosomal region 4p16-4p15, near the locus of PPARGC1A, the gene coding for PGC-1α. We now present data of 2-loci PPARGC1A block 2 haplotypes, showing an effect upon age-at-onset in 447 unrelated HD patients after statistical consideration of CAG repeat lengths in both HTT alleles. Block 1 haplotypes were not associated with the age-at-onset. Homozygosity for the 'protective' block 2 haplotype was associated with a significant delay in disease onset. To our knowledge this is the first study to show clinically relevant effects of the PGC-1α system on the course of Huntington's disease in humans
Concurrent AFG3L2 and SPG7 mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation
Mitochondrial dynamics and quality control are crucial for neuronal survival and their perturbation is a major cause of neurodegeneration. m-AAA complex is an ATP-dependent metalloprotease located in the inner mitochondrial membrane and involved in protein quality control. Mutations in the m-AAA subunits AFG3L2 and paraplegin are associated with autosomal dominant spinocerebellar ataxia (SCA28) and autosomal recessive hereditary spastic paraplegia (SPG7), respectively. We report a novel m-AAA-associated phenotype characterized by early-onset optic atrophy with spastic ataxia and L-Dopa-responsive parkinsonism. The proband carried a de-novo AFG3L2 heterozygous mutation (p.R468C) along with a heterozygous maternally-inherited intragenic deletion of SPG7. Functional analysis in yeast demonstrated the pathogenic role of AFG3L2 p.R468C mutation shedding light on its pathogenic mechanism. Analysis of patient's fibroblasts showed an abnormal processing pattern of OPA1, a dynamin-related protein essential for mitochondrial fusion and responsible for most cases of hereditary optic atrophy. Consistently, assessment of mitochondrial morphology revealed a severe fragmentation of the mitochondrial network, not observed in SCA28 and SPG7 patients\u2019 cells. This case suggests that coincidental mutations in both components of the mitochondrial m-AAA protease may result in a complex phenotype and reveals a crucial role for OPA1 processing in the pathogenesis of neurodegenerative disease caused by m-AAA defects
Glutamine Synthetase 1 Increases Autophagy Lysosomal Degradation of Mutant Huntingtin Aggregates in Neurons, Ameliorating Motility in a Drosophila Model for Huntington's Disease
Glutamine Synthetase 1 (GS1) is a key enzyme that catalyzes the ATP-dependent synthesis of l-glutamine from l-glutamate and is also member of the Glutamate Glutamine Cycle, a complex physiological process between glia and neurons that controls glutamate homeostasis and is often found compromised in neurodegenerative diseases including Huntington's disease (HD). Here we report that the expression of GS1 in neurons ameliorates the motility defects induced by the expression of the mutant Htt, using a Drosophila model for HD. This phenotype is associated with the ability of GS1 to favor the autophagy that we associate with the presence of reduced Htt toxic protein aggregates in neurons expressing mutant Htt. Expression of GS1 prevents the TOR activation and phosphorylation of S6K, a mechanism that we associate with the reduced levels of essential amino acids, particularly of arginine and asparagine important for TOR activation. This study reveals a novel function for GS1 to ameliorate neuronal survival by changing amino acids' levels that induce a "starvation-like" condition responsible to induce autophagy. The identification of novel targets that inhibit TOR in neurons is of particular interest for the beneficial role that autophagy has in preserving physiological neuronal health and in the mechanisms that eliminate the formation of toxic aggregates in proteinopathies
Preferential expression of mutant ABCD1 allele is common in adrenoleukodystrophy female carriers but unrelated to clinical symptoms
<p>Abstract</p> <p>Background</p> <p>Approximately 20% of adrenoleukodystrophy (X-ALD) female carriers may develop clinical manifestations, typically consisting of progressive spastic gait, sensory deficits and bladder dysfunctions. A skewing in X Chromosome Inactivation (XCI), leading to the preferential expression of the X chromosome carrying the mutant <it>ABCD1 </it>allele, has been proposed as a mechanism influencing X-linked adrenoleukodystrophy (X-ALD) carrier phenotype, but reported data so far are conflicting.</p> <p>Methods</p> <p>To shed light into this topic we assessed the XCI pattern in peripheral blood mononuclear cells (PBMCs) of 30 X-ALD carriers. Since a frequent problem with XCI studies is the underestimation of skewing due to an incomplete sample digestion by restriction enzymes, leading to variable results, we developed a pyrosequencing assay to identify samples completely digested, on which to perform the XCI assay. Pyrosequencing was also used to quantify <it>ABCD1 </it>allele-specific expression. Moreover, very long-chain fatty acid (VLCFA) levels were determined in the same patients.</p> <p>Results</p> <p>We found severely (≥90:10) or moderately (≥75:25) skewed XCI in 23 out of 30 (77%) X-ALD carriers and proved that preferential XCI is mainly associated with the preferential expression of the mutant <it>ABCD1 </it>allele, irrespective of the manifestation of symptoms. The expression of mutant <it>ABCD1 </it>allele also correlates with plasma VLCFA concentrations.</p> <p>Conclusions</p> <p>Our results indicate that preferential XCI leads to the favored expression of the mutant <it>ABCD1 </it>allele. This emerges as a general phenomenon in X-ALD carriers not related to the presence of symptoms. Our data support the postulated growth advantage of cells with the preferential expression of the mutant <it>ABCD1 </it>allele, but argue against the use of XCI pattern, <it>ABCD1 </it>allele-specific expression pattern and VLCFA plasma concentration as biomarkers to predict the development of symptoms in X-ALD carriers.</p
Cortical markers of cognitive syndromes in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) can be associated with a spectrum of cognitive and behavioural symptoms, but the related patterns of focal cortical atrophy in non-demented ALS patients remain largely unknown. We enrolled 48 non-demented ALS patients and 26 healthy controls for a comprehensive neuropsychological assessment and a magnetic resonance exam. Behavioural and cognitive impairment was defined on the basis of a data-driven multi-domain approach in 21 ALS patients. Averaged cortical thickness of 74 bilateral brain regions was used as a measure of cortical atrophy. Cortical thinning in a fronto-parietal network, suggesting a disease-specific pattern of neurodegeneration, was present in all patients, independent of cognitive and behavioural status. Between-group and correlational analyses revealed that inferior frontal, temporal, cingular and insular thinning are markers for cognitive and behavioural deficits, with language impairment mainly related to left temporal pole and insular involvement. These specific correlates support the concept of a spectrum of deficits, with an overlap between the ALS cognitive phenotypes and the syndromes of frontotemporal dementia
Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models
This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al
Cognitive Syndromes and C9orf72 Mutation Are Not Related to Cerebellar Degeneration in Amyotrophic Lateral Sclerosis
Objective: The notion that cerebellar pathology may contribute to cognitive impairment in ALS, especially in patients with C9orf72 repeated expansion, has been inconsistently reported. This study aimed exploring the relationship between cerebellar involvement, cognitive impairment and C9orf72 repeated expansion of patients with ALS.
Methods: Quantitative in vivo assessment of cerebellar lobules has been investigated in 66 non-demented patients with ALS and 28 healthy controls (HCs). Pathologic C9orf72 repeated expansion was found in 13 patients. Mild cognitive and/or behavioral impairment was diagnosed in 22 C9orf72 negative ALS patients. Measures of cortical volume (CV} and cortical thickness (CT) of cerebellar lobules of all participants were used for Principal Component Analysis (PCA) to identify clusters of lobular measures highly correlated with each other. PCA outcomes were used for between group comparisons and correlation analyses with neuropsychological and clinical features.
Results: Disease severity measured with ALS functional rating scale and index of disease progression rate significantly correlated with CV reduction of the second PCA cluster loading CV measures of anterior lobules. In all patients, cognitive impairment, measured with verbal fluency, was related to CV reduction of the third cluster comprising posterior lobules. No specific cortical thinning or volume reduction of cerebellar clustering patterns could be detected in ALS subgroups.
Conclusion: Our data show that specific patterns of subregional cerebellar involvement are associated with physical disability or cognitive impairment in ALS, in line with the topographic organization of the cerebellum. However, there was no specific correlation between cerebellar degeneration and cognitive syndromes or C9orf72 mutations
A Combined Nucleic Acid and Protein Analysis in Friedreich Ataxia: Implications for Diagnosis, Pathogenesis and Clinical Trial Design
BACKGROUND:
Friedreich's ataxia (FRDA) is the most common hereditary ataxia among caucasians. The molecular defect in FRDA is the trinucleotide GAA expansion in the first intron of the FXN gene, which encodes frataxin. No studies have yet reported frataxin protein and mRNA levels in a large cohort of FRDA patients, carriers and controls.
METHODOLOGY/PRINCIPAL FINDINGS:
We enrolled 24 patients with classic FRDA phenotype (cFA), 6 late onset FRDA (LOFA), all homozygous for GAA expansion, 5 pFA cases who harbored the GAA expansion in compound heterozygosis with FXN point mutations (namely, p.I154F, c.482+3delA, p.R165P), 33 healthy expansion carriers, and 29 healthy controls. DNA was genotyped for GAA expansion, mRNA/FXN was quantified in real-time, and frataxin protein was measured using lateral-flow immunoassay in peripheral blood mononuclear cells (PBMCs). Mean residual levels of frataxin, compared to controls, were 35.8%, 65.6%, 33%, and 68.7% in cFA, LOFA, pFA and healthy carriers, respectively. Comparison of both cFA and pFA with controls resulted in 100% sensitivity and specificity, but there was overlap between LOFA, carriers and controls. Frataxin levels correlated inversely with GAA1 and GAA2 expansions, and directly with age at onset. Messenger RNA expression was reduced to 19.4% in cFA, 50.4% in LOFA, 52.7% in pFA, 53.0% in carriers, as compared to controls (p<0.0001). mRNA levels proved to be diagnostic when comparing cFA with controls resulting in 100% sensitivity and specificity. In cFA and LOFA patients mRNA levels correlated directly with protein levels and age at onset, and inversely with GAA1 and GAA2.
CONCLUSION/SIGNIFICANCE:
We report the first explorative study on combined frataxin and mRNA levels in PBMCs from a cohort of FRDA patients, carriers and healthy individuals. Lateral-flow immunoassay differentiated cFA and pFA patients from controls, whereas determination of mRNA in q-PCR was sensitive and specific only in cFA
Angiogenin protects motoneurons against hypoxic injury.
Cells can adapt to hypoxia through the activation of hypoxia-inducible factor-1 (HIF-1), which in turn regulates the expression of hypoxia-responsive genes. Defects in hypoxic signaling have been suggested to underlie the degeneration of motoneurons in amyotrophic lateral sclerosis (ALS). We have recently identified mutations in the hypoxia-responsive gene, angiogenin (ANG), in ALS patients, and have shown that ANG is constitutively expressed in motoneurons. Here, we show that HIF-1alpha is sufficient and required to activate ANG in cultured motoneurons exposed to hypoxia, although ANG expression does not change in a transgenic ALS mouse model or in sporadic ALS patients. Administration of recombinant ANG or expression of wild-type ANG protected motoneurons against hypoxic injury, whereas gene silencing of ang1 significantly increased hypoxia-induced cell death. The previously reported ALS-associated ANG mutations (Q12L, K17I, R31K, C39W, K40I, I46V) all showed a reduced neuroprotective activity against hypoxic injury. Our data show that ANG plays an important role in endogenous protective pathways of motoneurons exposed to hypoxia, and suggest that loss of function rather than loss of expression of ANG is associated with ALS
Clinical pregenetic screening for stroke monogenic diseases: Results from lombardia GENS registry
BACKGROUND AND PURPOSE:
Lombardia GENS is a multicentre prospective study aimed at diagnosing 5 single-gene disorders associated with stroke (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, Fabry disease, MELAS [mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes], hereditary cerebral amyloid angiopathy, and Marfan syndrome) by applying diagnostic algorithms specific for each clinically suspected disease
METHODS:
We enrolled a consecutive series of patients with ischemic or hemorrhagic stroke or transient ischemic attack admitted in stroke units in the Lombardia region participating in the project. Patients were defined as probable when presenting with stroke or transient ischemic attack of unknown etiopathogenic causes, or in the presence of <3 conventional vascular risk factors or young age at onset, or positive familial history or of specific clinical features. Patients fulfilling diagnostic algorithms specific for each monogenic disease (suspected) were referred for genetic analysis.
RESULTS:
In 209 patients (57.4\ub114.7 years), the application of the disease-specific algorithm identified 227 patients with possible monogenic disease. Genetic testing identified pathogenic mutations in 7% of these cases. Familial history of stroke was the only significant specific feature that distinguished mutated patients from nonmutated ones. The presence of cerebrovascular risk factors did not exclude a genetic disease.
CONCLUSIONS:
In patients prescreened using a clinical algorithm for monogenic disorders, we identified monogenic causes of events in 7% of patients in comparison to the 1% to 5% prevalence reported in previous series
- …