80 research outputs found

    A new fluid-based strategy for the connection of non-matching lattice materials

    Get PDF
    We present a new algorithm for the design of the connection region between di erent lattice materials. We solve a Stokes- type topology optimization problem on a narrow morphing region to smoothly connect two di erent unit cells. The proposed procedure turns out to be e ective and provides a local re-design of the materials, leading to a very mild modi cation of the mechanical behavior characterizing the original lattices. The robustness of the algorithm is assessed in terms of sensitivity of the nal layout to di erent parameters. Both the cases of Cartesian and non-Cartesian morphing regions are successfully investigated

    Interval Sentinel Lymph Nodes: An Unusual Localization in Patients with Cutaneous Melanoma

    Get PDF
    Background. Recent studies have demonstrated that there exists a great variation in the lymphatic drainage in patients with malignant melanoma. Some patients have drainage to lymph nodes outside of conventional nodal basins. The lymph nodes that exist between a primary melanoma and its regional nodal basin are defined “interval nodes”. Interval node occurs in a small minority of patients with forearm melanoma. We report our experience of the Melanoma Unit of University Hospital Spedali Civili Brescia, Italy. Methods. Lymphatic mapping using cutaneous lymphoscintigraphy (LS) has become a standard preoperative diagnostic procedure to locate the sentinel lymph nodes (SLNs) in cutaneous melanoma. We used LS to identify sentinel lymph nodes biopsy (SLNB) in 480 patients. Results. From over 2100 patients affected by cutaneous melanoma, we identified 2 interval nodes in 480 patients with SLNB . The melanomas were both located in the left forearm. The interval nodes were also both located in the left arm. Conclusion. The combination of preoperative LS and intraoperative hand-held gamma detecting probe plays a remarkable role in identifying these uncommon lymph node locations. Knowledge of the unusual drainage patterns will help to ensure the accuracy and the completeness of sentinel nodes identification

    Spasmogenic Effects of the Proteasome Inhibitor Carfilzomib on Coronary Resistance, Vascular Tone and Reactivity

    Get PDF
    Background: Carfilzomib (CFZ) is a new proteasome inhibitor used for the treatment of multiple myeloma. Besides heart failure, angina and myocardial ischemia occurred following administration of CFZ, which is not contraindicated in patients with recent myocardial infarction/unstable angina excluded from the safety trials. Aimof Study: To test the effects of CFZ (10−9 to 10−7 mol/L) on vascular tone and reactivity in the isolated rabbit heart and aorta. Methods and Results: CFZ administered by bolus injection to the isolated heart increased coronary perfusion pressure (CPP) at all tested concentrations and mildly raised left ventricular pressure and heart rate, only at the highest concentration. Addition of CFZ directly into the organ bath increased the basal tone of isolated aortic strips with contraction plateau reached after 10 min. This spasmogenic effect doubled following ablation of the endothelium. Pretreatment with CFZ amplified the vasospastic action exerted by KCl, noradrenaline (NA) and angiotensin II (A) on aortic strips, and impaired vasodilation following administration of nitroglycerin (NTG) and nifedipine (NFP) on the contraction plateau induced by KCl, NA and A. Aortic strips pretreatedwith CFZ exhibited impaired relaxation, as compared to untreated strips, following administration of acetylcholine (Ach), an endothelium- dependent vasodilating agent, on the plateau of NA contraction (p b 0.05). Conclusions: CFZ increased CPP, resting vasoconstricting tone and the spasmogenic effect of different agents. Preincubation with CFZ decreased the anti-spasmogenic activity of NTG and NFP, as well as reduced by over 50% the vasodilating effect of Ach, suggesting that CFZ can impair vasodilation via an endothelium dependent mechanism. Further studies are warranted to establish its clinical safety in patients with known CAD and prior history of coronary spasm

    Ventricular arrhythmias in patients with functional mitral regurgitation and implantable cardiac devices: implications of mitral valve repair with Mitraclip

    Get PDF
    Background: Limited information has been reported regarding the impact of percutaneous mitral valve repair (PMVR) on ventricular arrhythmic (VA) burden. The aim of this study was to address the incidence of VA and appropriate antitachycardia implantable cardiac defibrillator (ICD) therapies before and after PMVR. Methods: We retrospectively analyzed all consecutive patients with heart failure with reduce left ventricular ejection fraction (LVEF), functional mitral regurgitation (FMR) grade 3+ or 4+ and an active ICD or cardiac resynchronizer who underwent PMVR in any of the eleven recruiting centers. Only patients with complete available device VA monitoring from one-year before to one year after PMVR were included. Baseline clinical and echocardiographic characteristics were collected before PMVR and at 12-months follow-up. Results: Ninety-three patients (68.2+/-10.9 years old, male 88.2%) were enrolled. PMVR was successfully performed in all patients and device success at discharge was 91.4%. At 12-month follow-up, we observed a significant reduction in mitral regurgitation severity, NT-proBNP and prevalence of severe pulmonary hypertension and severe kidney disease. Patients also referred a significant improvement in NYHA functional class and showed a non-significant trend to reserve left ventricular remodeling. After PMVR a significant decrease in the incidence of non-sustained ventricular tachycardia (VT) (5.0+/-17.8 vs. 2.7+/-13.5, P=0.002), sustained VT or ventricular fibrillation (0.9+/-2.5 vs. 0.5+/-2.9, P=0.012) and ICD antitachycardia therapies (2.5+/-12.0 vs. 0.9+/-5.0, P=0.033) were observed. Conclusions: PMVR was related to a reduction in arrhythmic burden and ICD therapies in our cohort

    In vitro phosphorylation as tool for modification of silk and keratin fibrous materials

    Get PDF
    An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phosphorylation a real "green chemistry" approach. The current communication presents a novel approach stating that enzyme phosphorylation may be used as a tool to modify the surface charge of biocompatible materials such as keratin and silk

    Multiaxial static strength of a 3D printed metallic lattice structure exhibiting brittle behavior

    Get PDF
    This paper focuses on numerical the prediction of multiaxial static strength of lattice structures. We analyze a body-centered cubic cell printed with Selective Laser Melting in AlSi10Mg aluminum alloy. Parent material is experimentally characterized, and the Gurson-Tveergard-Needleman (GTN) damage model is calibrated to predict failure in numerical simulations. The GTN model is used to predict failure of the lattice structures exhibiting brittle localized fracture, and it is validated through static tests. The results of experimental tension/compression monotonic tests on lattice samples are compared with the results of numerical simulations performed on as-built geometry reconstructed by X-ray computed tomography, showing a good correlation. Combining the damage model with computational micromechanics, multiaxial loading conditions are simulated to investigate the effective multiaxial strength of the lattice material. Yielding and failure loci are found by fitting a batch of points obtained by some multiaxial loading simulations. A formulation based on the criterion proposed by Tsai and Wu (1971) for anisotropic materials provides a good description of yielding and failure behavior under multiaxial load. Results are discussed, with a specific focus on the effect of as-built defects on multiaxial strength, by comparing the resistance domains of as-manufactured and as-designed lattices

    Cyclic response of 3D printed metamaterials with soft cellular architecture: The interplay between as-built defects, material and geometric non-linearity

    No full text
    The paper investigates the cyclic response of soft cellular materials undergoing repeated local instabilities. Our focus is mainly on the coupling between material non-linearities, geometric non-linearity as well as defects induced by 3D printing. Two paradigmatic lattices (triangular and hexagonal), each with its own distinct deformation mode and defect sensitivity, are examined, and the emergence of as-built material and geometric defects in the form of microporosity, strut thickness reduction, and nodal dispersion is studied via computed tomography and optical analyses. Experiments are carried out on the base material and lattice specimens for given cycling strains and cycle ratios. Numerical models are developed to understand the individual role of the main constitutive aspects of the base material, e.g. damage, creep, and visco-elasticity, as well as to assess the role of defects in each architecture. The results show that the activation of local buckling combined with the engagement of material non-linearities has multiple outcomes. It leads to local storage of inelastic strain, which in turn perturbs the lattice geometry after the second cycle and severely impacts the subsequent response, e.g. softening; it reduces the tangent modulus at zero strain; and it also decreases the maximum and minimum cyclic stresses. The detriment is further fueled by geometric deviations caused by 3D printing. Furthermore, a theoretical model is presented to obtain stress bound estimates of the stabilized response, hence offering guidelines for the design of 3D printed soft metamaterials under cycling loading. The paper concludes with a systematic discussion on the coupled role of non-linearities (material and geometry) and defects, and on the accuracy of the numerical and theoretical models herein presented
    corecore