1,011 research outputs found
Microstability analysis of pellet fuelled discharges in MAST
Reactor grade plasmas are likely to be fuelled by pellet injection. This
technique transiently perturbs the profiles, driving the density profile hollow
and flattening the edge temperature profile. After the pellet perturbation, the
density and temperature profiles relax towards their quasi-steady-state shape.
Microinstabilities influence plasma confinement and will play a role in
determining the evolution of the profiles in pellet fuelled plasmas. In this
paper we present the microstability analysis of pellet fuelled H-mode MAST
plasmas. Taking advantage of the unique capabilities of the MAST Thomson
scattering system and the possibility of synchronizing the eight lasers with
the pellet injection, we were able to measure the evolution of the post-pellet
electron density and temperature profiles with high temporal and spatial
resolution. These profiles, together with ion temperature profiles measured
using a charge exchange diagnostic, were used to produce equilibria suitable
for microstability analysis of the equilibrium changes induced by pellet
injection. This analysis, carried out using the local gyrokinetic code GS2,
reveals that the microstability properties are extremely sensitive to the rapid
and large transient excursions of the density and temperature profiles, which
also change collisionality and beta e significantly in the region most strongly
affected by the pellet ablation.Comment: 21 pages, 10 figures. This is an author-created, un-copyedited
version of an article submitted for publication in Plasma Physics and
Controlled Fusion. IOP Publishing Ltd is not responsible for any errors or
omissions in this version of the manuscript or any version derived from i
Charge dependence of neoclassical and turbulent transport of light impurities on MAST
Carbon and nitrogen impurity transport coefficients are determined from gas
puff experiments carried out during repeat L-mode discharges on the Mega-Amp
Spherical Tokamak (MAST) and compared against a previous analysis of helium
impurity transport on MAST. The impurity density profiles are measured on the
low-field side of the plasma, therefore this paper focuses on light impurities
where the impact of poloidal asymmetries on impurity transport is predicted to
be negligible. A weak screening of carbon and nitrogen is found in the plasma
core, whereas the helium density profile is peaked over the entire plasma
radius.Comment: 17 pages, 7 figure
Helium plasma operations on ASDEX Upgrade and JET in support of the non-nuclear phases of ITER
For its initial operational phase, ITER has until recently considered using non-nuclear hydrogen (H) or helium (He) plasmas to keep nuclear activation at low levels. To this end, the Tokamak Exploitation Task Force of the EUROfusion Consortium carried out dedicated experimental campaigns in He on the ASDEX Upgrade (AUG) and JET tokamaks in 2022, with particular emphasis put on the ELMy H-mode operation and plasma-wall interaction processes as well as comparison to H or deuterium (D) plasmas. Both in pure He and mixed He + H plasmas, H-mode operation could be reached but more effort was needed to obtain a stable plasma scenario than in H or D. Even if the power threshold for the LH transition was lower in He, entering the type-I ELMy regime appeared to require equally much or even more heating power than in H. Suppression of ELMs by resonant magnetic perturbations was studied on AUG but was only possible in plasmas with a He content below 19%; the reason for this unexpected behaviour remains still unclear and various theoretical approaches are being pursued to properly understand the physics behind ELM suppression. The erosion rates of tungsten (W) plasma-facing components were an order of magnitude larger than what has been reported in hydrogenic plasmas, which can be attributed to the prominent role of He2+ ions in the plasma. For the first time, the formation of nanoscale structures (W fuzz) was unambiguously demonstrated in H-mode He plasmas on AUG. However, no direct evidence of fuzz creation on JET was obtained despite the main conditions for its occurrence being met. The reason could be a delicate balance between W erosion by ELMs, competition between the growth and annealing of the fuzz, and coverage of the surface with co-deposits.</p
Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall
The core micro-instability characteristics of hybrid and baseline plasmas in
a selected set of JET plasmas with carbon wall are investigated through local
linear and non-linear and global linear gyro-kinetic simulations with the GYRO
code [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]. In
particular, we study the role of plasma pressure on the micro-instabilities,
and scan the parameter space for the important plasma parameters responsible
for the onset and stabilization of the modes under experimental conditions. We
find that a good core confinement due to strong stabilization of the
micro-turbulence driven transport can be expected in the hybrid plasmas due to
the stabilizing effect of the fast ion pressure that is more effective at the
low magnetic shear of the hybrid discharges. While parallel velocity gradient
destabilization is important for the inner core, at outer radii the hybrid
plasmas may benefit from a strong quench of the turbulence transport by
rotation shear.Comment: accepted for publication in Nuclear Fusio
Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes
Self-consistent transport simulation of ITER scenarios is a very important
tool for the exploration of the operational space and for scenario
optimisation. It also provides an assessment of the compatibility of developed
scenarios (which include fast transient events) with machine constraints, in
particular with the poloidal field (PF) coil system, heating and current drive
(H&CD), fuelling and particle and energy exhaust systems. This paper discusses
results of predictive modelling of all reference ITER scenarios and variants
using two suite of linked transport and equilibrium codes. The first suite
consisting of the 1.5D core/2D SOL code JINTRAC [1] and the free boundary
equilibrium evolution code CREATE-NL [2,3], was mainly used to simulate the
inductive D-T reference Scenario-2 with fusion gain Q=10 and its variants in H,
D and He (including ITER scenarios with reduced current and toroidal field).
The second suite of codes was used mainly for the modelling of hybrid and
steady state ITER scenarios. It combines the 1.5D core transport code CRONOS
[4] and the free boundary equilibrium evolution code DINA-CH [5].Comment: 23 pages, 18 figure
- …