58 research outputs found

    DHA Supplemented in Peptamen Diet Offers No Advantage in Pathways to Amyloidosis: Is It Time to Evaluate Composite Lipid Diet?

    Get PDF
    Numerous reports have documented the beneficial effects of dietary docosahexaenoic acid (DHA) on beta-amyloid production and Alzheimer's disease (AD). However, none of these studies have examined and compared DHA, in combination with other dietary nutrients, for its effects on plaque pathogenesis. Potential interactions of DHA with other dietary nutrients and fatty acids are conventionally ignored. Here we investigated DHA with two dietary regimes; peptamen (pep+DHA) and low fat diet (low fat+DHA). Peptamen base liquid diet is a standard sole-source nutrition for patients with gastrointestinal dysfunction. Here we demonstrate that a robust AD transgenic mouse model shows an increased tendency to produce beta-amyloid peptides and amyloid plaques when fed a pep+DHA diet. The increase in beta-amyloid peptides was due to an elevated trend in the levels of beta-secretase amyloid precursor protein (APP) cleaving enzyme (BACE), the proteolytic C-terminal fragment beta of APP and reduced levels of insulin degrading enzyme that endoproteolyse beta-amyloid. On the contrary, TgCRND8 mice on low fat+DHA diet (based on an approximately 18% reduction of fat intake) ameliorate the production of abeta peptides and consequently amyloid plaques. Our work not only demonstrates that DHA when taken with peptamen may have a tendency to confer a detrimental affect on the amyloid plaque build up but also reinforces the importance of studying composite lipids or nutrients rather than single lipids or nutrients for their effects on pathways important to plaque development

    Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats

    Get PDF
    Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2–3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.Nutricia Researc

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Long-chain PUFA supplementation in rural African infants: a randomized controlled trial of effects on gut integrity, growth, and cognitive development.

    Get PDF
    BACKGROUND: Intestinal damage and malabsorption caused by chronic environmental enteropathy are associated with growth faltering seen in infants in less-developed countries. Evidence has suggested that supplementary omega-3 (n-3) long-chain PUFAs (LC-PUFAs) might ameliorate this damage by reducing gastrointestinal inflammation. LC-PUFA supplementation may also benefit cognitive development. OBJECTIVE: We tested whether early n-3 LC-PUFA supplementation improves infant intestinal integrity, growth, and cognitive function. DESIGN: A randomized, double-blind, controlled trial [200 mg DHA and 300 mg EPA or 2 mL olive oil/d for 6 mo] was conducted in a population of 172 rural Gambian infants aged 3-9 mo. The primary endpoints were anthropometric measures and gut integrity [assessed by using urinary lactulose:mannitol ratios (LMRs)]. Plasma fatty acid status, intestinal mucosal inflammation (fecal calprotectin), daily morbidity, and cognitive development (2-step means-end test and an attention assessment) were secondary endpoints. RESULTS: PUFA supplementation resulted in a significant increase in plasma n-3 LC-PUFA concentrations (P < 0.001 for both DHA and EPA) and midupper arm circumference (MUAC) (effect size: 0.31 z scores; 95% CI: 0.06, 0.56; P = 0.017) at 9 mo of age. At 12 mo, MUAC remained greater in the intervention group, and we observed significant increases in skinfold thicknesses (P ≤ 0.022 for all). No other significant differences between treatment groups were detected for growth or LMRs at 9 mo or for secondary outcomes. CONCLUSIONS: Fish-oil supplementation successfully increased plasma n-3 fatty acid status. However, in young, breastfed Gambian infants, the intervention failed to improve linear growth, intestinal integrity, morbidity, or selected measures of cognitive development. The trial was registered at www.isrctn.org as ISRCTN66645725
    corecore